HEADSET PROFILE

Abstract:

This profile defines the requirements for Bluetooth® devices necessary to support the Headset use case. The requirements are expressed in terms of end-user services, and by defining the features and procedures that are required for interoperability between Bluetooth devices in the Headset use case.
Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>D12r00</td>
<td>15 August 2005</td>
<td>Review draft</td>
</tr>
<tr>
<td>D12r01</td>
<td>13 September 2005</td>
<td>Editorial updates to include 1.2 or Later updates</td>
</tr>
<tr>
<td>D12r02</td>
<td>30 November 2005</td>
<td>Editorial updates</td>
</tr>
<tr>
<td>D12r03</td>
<td>17 August 2007</td>
<td>Editorial updates to include core spec 2.1+EDR – also address HSP errata 350, 368, and 446 (new ID numbers)</td>
</tr>
<tr>
<td>D12r04</td>
<td>19 August 2007</td>
<td>Edits based on discussion during BARB call – removed PARK references</td>
</tr>
<tr>
<td>D12r05</td>
<td>30 August 2007</td>
<td>Edits based on BARB review feedback</td>
</tr>
<tr>
<td>D12r06</td>
<td>07 September 2007</td>
<td>More BARB review edits and correct version number</td>
</tr>
<tr>
<td>D12r07</td>
<td>06 November 2007</td>
<td>More edits from review</td>
</tr>
<tr>
<td>D12r08</td>
<td>12 November 2007</td>
<td>Add ESR 01 stuff</td>
</tr>
<tr>
<td>D12r09</td>
<td>30 November 2007</td>
<td>TB and LLO comments addressed</td>
</tr>
<tr>
<td>D12r10</td>
<td>3 December 2007</td>
<td>New dependency table provided by the SIG</td>
</tr>
<tr>
<td>D12r11</td>
<td>04 December 2007</td>
<td>Comments from TWG addressed Reviewed for open errata coverage – new ids 114, 140, 215, 221, 351. Errata 350, 368, and 446 were previously addressed Checked ESR 1 coverage.</td>
</tr>
<tr>
<td>D12r12</td>
<td>28 January 2008</td>
<td>BARB final voting draft</td>
</tr>
<tr>
<td>D12</td>
<td>18 December 2008</td>
<td>Prepare for publication.</td>
</tr>
<tr>
<td>V12</td>
<td>18 December 2008</td>
<td>Adopted by Bluetooth SIG Board of Directors</td>
</tr>
</tbody>
</table>

Contributors

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richard Shaw</td>
<td>3Com</td>
</tr>
<tr>
<td>Ken Morley</td>
<td>3Com</td>
</tr>
<tr>
<td>Erik Slotboom</td>
<td>Ericsson Mobile Communications AB</td>
</tr>
<tr>
<td>Olof Dellien</td>
<td>Ericsson Mobile Communications AB</td>
</tr>
<tr>
<td>Bailey Cross</td>
<td>Intel Corporation</td>
</tr>
<tr>
<td>Shridar Rajagopal</td>
<td>Intel Corporation</td>
</tr>
<tr>
<td>Brian Redding</td>
<td>Motorola</td>
</tr>
<tr>
<td>Alex Feinman</td>
<td>Motorola</td>
</tr>
<tr>
<td>Thomas Muller</td>
<td>Nokia Mobile Phones</td>
</tr>
<tr>
<td>Christian Zechlin</td>
<td>Nokia Mobile Phones</td>
</tr>
<tr>
<td>Martin Roter</td>
<td>Nokia Mobile Phones</td>
</tr>
<tr>
<td>Jun’ichi Yoshizawa</td>
<td>Toshiba</td>
</tr>
<tr>
<td>Terry Bourk</td>
<td>QUALCOMM</td>
</tr>
<tr>
<td>Kanji Kerai</td>
<td>Nokia Mobile Phones</td>
</tr>
<tr>
<td>Burch Seymour</td>
<td>Continental Automotive Systems</td>
</tr>
<tr>
<td>Len Ott</td>
<td>Socket Mobile</td>
</tr>
</tbody>
</table>

Disclaimer and Copyright Notice

The copyright in this specification is owned by the Promoter Members of Bluetooth® Special Interest Group (SIG), Inc. ("Bluetooth SIG"). Use of these specifications and any related intellectual property (collectively, the "Specification"), is governed by the Promoters Membership Agreement among the Promoter Members and Bluetooth SIG (the "Promoters Agreement"), certain membership agreements between Bluetooth SIG and its Adopter and Associate Members (the "Membership Agreements") and the Bluetooth Specification Early Adopters Agreements (1.2 Early Adopters Agreements) among Early Adopter members of the unincorporated Bluetooth SIG and the Promoter Members (the "Early Adopters Agreement"). Certain rights and obligations of the Promoter Members under the Early Adopters Agreements have been assigned to Bluetooth SIG by the Promoter Members.

Use of the Specification by anyone who is not a member of Bluetooth SIG or a party to an Early Adopters Agreement (each such person or party, a "Member"), is prohibited. The legal rights and obligations of each Member are governed by their applicable Membership Agreement, Early Adopters Agreement or Promoters Agreement. No license, express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein.

Any use of the Specification not in compliance with the terms of the applicable Membership Agreement, Early Adopters Agreement or Promoters Agreement is prohibited and any such prohibited use may result in termination of the applicable Membership Agreement or Early Adopters Agreement and other liability permitted by the applicable agreement or by applicable law to Bluetooth SIG or any of its members for patent, copyright and/or trademark infringement.

THE SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, SATISFACTORY QUALITY, OR REASONABLE SKILL OR CARE, OR ANY WARRANTY ARISING OUT OF ANY COURSE OF DEALING, USAGE, TRADE PRACTICE, PROPOSAL, SPECIFICATION OR SAMPLE.

Each Member hereby acknowledges that products equipped with the Bluetooth technology ("Bluetooth products") may be subject to various regulatory controls under the laws and regulations of various governments worldwide. Such laws and regulatory controls may govern, among other things, the combination, operation, use, implementation and distribution of Bluetooth products. Examples of such laws and regulatory controls include, but are not limited to, airline regulatory controls, telecommunications regulations, technology transfer controls and health and safety regulations. Each Member is solely responsible for the compliance by their Bluetooth Products with any such laws and regulations and for obtaining any and all required authorizations, permits, or licenses for their Bluetooth products related to such regulations within the applicable jurisdictions. Each Member acknowledges that nothing in the Specification provides any information or assistance in connection with securing such compliance, authorizations or licenses. NOTHING IN THE SPECIFICATION CREATES ANY WARRANTIES, EITHER EXPRESS OR IMPLIED, REGARDING SUCH LAWS OR REGULATIONS.

ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHTS OR FOR NONCOMPLIANCE WITH LAWS, RELATING TO USE OF THE SPECIFICATION IS EXPRESSLY DISCLAIMED. BY USE OF THE SPECIFICATION, EACH MEMBER EXPRESSLY WAIVES ANY CLAIM AGAINST BLUETOOTH SIG AND ITS PROMOTER MEMBERS RELATED TO USE OF THE SPECIFICATION.

Bluetooth SIG reserve the right to adopt any changes or alterations to the Specification as it deems necessary or appropriate.

Copyright © 2001–2008. Bluetooth® SIG, Inc. All copyrights in the Bluetooth Specifications themselves are owned by Ericsson AB, Lenovo, Intel Corporation, Microsoft Corporation, Motorola, Inc., Nokia Corporation and Toshiba Corporation. *Other third-party brands and names are the property of their respective owners.
Contents

1 Introduction ... 5
 1.1 Scope .. 5
 1.2 Profile Dependencies .. 5
 1.3 Symbols and Conventions .. 5
 1.3.1 Requirement Status Symbols ... 5
 1.4 Signaling Diagram Conventions .. 5
2 Profile Overview .. 7
 2.1 Profile stack .. 7
 2.2 Configuration and roles .. 7
 2.3 User requirements and Scenarios ... 8
 2.4 Profile Fundamentals .. 9
 2.5 Conformance ... 9
3 Application Layer ... 10
4 Headset Control Interoperability Requirements ... 11
 4.1 Introduction .. 11
 4.2 Audio Gateway Initiated ACL Connection Establishment ... 11
 4.2.1 Using In-Band Ringing ... 11
 4.2.2 Using the RING message .. 12
 4.3 Headset Initiated ACL Connection Establishment ... 13
 4.4 Headset Control Following Connection Establishment ... 14
 4.5 Audio Connection Release ... 14
 4.6 Audio Connection Transfer ... 15
 4.6.1 Audio Connection Transfer from AG to HS .. 16
 4.6.2 Audio Connection Transfer from HS to AG .. 16
 4.7 Remote Audio Volume Control ... 16
 4.8 AT Commands and Result Codes .. 18
 4.8.1 General .. 18
 4.8.2 AT Capabilities Re-used from V.250 ... 19
 4.8.3 Bluetooth-defined AT capabilities .. 19
 4.9 Lower Layer Handling .. 19
 4.9.1 Connection Handling ... 20
 4.9.1.1 Connection establishment .. 20
 4.9.1.2 Connection release 20
 4.9.1.3 Sniff mode ... 20
5 Serial Port Profile .. 21
 5.1 RFCOMM Interoperability Requirements .. 21
 5.2 L2CAP Interoperability Requirements ... 21
 5.3 SDP Interoperability Requirements .. 21
 5.4 Link Manager (LM) Interoperability Requirements .. 22
 5.5 Link Control (LC) Interoperability Requirements ... 22
 5.5.1 Class of Device ... 22
6 Generic Access Profile ... 24
 6.1 Modes .. 24
 6.2 Security Aspects ... 24
 6.3 Idle Mode Procedures .. 24
7 References .. 25
8 List of Figures ... 26
9 List of Tables ... 27
1 Introduction

1.1 Scope
This Headset profile defines the protocols and procedures that shall be used by devices requiring a full-duplex audio connection combined with minimal device control commands. The most common examples of such devices are headsets, personal computers, PDAs, and cellular phones, though most cellular phones will prefer to use a more advanced profile such as Hands-Free Profile.

The headset can be wirelessly connected for the purposes of acting as the device’s audio input and output mechanism, providing full duplex audio. The headset increases the user’s mobility while maintaining call privacy.

1.2 Profile Dependencies
The Headset profile is dependent upon both the Serial Port Profile and the Generic access profile – details are provided in Serial Port Profile and Generic Access Profile.

1.3 Symbols and Conventions

1.3.1 Requirement Status Symbols
In this document, the following symbols are used:

- ‘M’ for mandatory to support
- ‘O’ for optional to support
- ‘X’ for excluded (used for capabilities that may be supported by the unit but shall never be used in this use case)
- ‘C’ for conditional to support
- ‘N/A’ for not applicable (in the given context it is impossible to use this capability)

Some excluded capabilities are capabilities that, according to the relevant Bluetooth specification, are mandatory. These are features that may degrade operation of devices in this use case. Therefore, these features shall never be activated while a unit is operating as a unit within this use case.

1.4 Signaling Diagram Conventions
The following arrows are used in diagrams describing procedures:
Figure 1.1: Arrows used in signaling diagrams

Mandatory signal sent by A
Optional signal sent by B
Mandatory procedure initiated by B
Optional procedure initiated by A
Mandatory procedure initiated by either A or B
2 Profile Overview

2.1 Profile stack

Figure 2.1 shows the protocols and entities used in this profile.

![Protocol model diagram]

The Controller, HCI, and L2CAP are the OSI layer 1 and 2 Bluetooth protocols. RFCOMM is the Bluetooth adaptation of GSM TS 07.10 [5]. SDP is the Bluetooth Service Discovery Protocol. Headset Profile and AT CMD are the entities responsible for headset specific control signaling, which is AT command based.

For the HSP layer in Figure 2.2 the Serial Port Profile is used as a base standard. For this protocol, all requirements stated in the Serial Port Profile apply except in those cases where this profile explicitly states deviations.

2.2 Configuration and roles

The figures below show two typical configurations of devices for which the Headset profile is applicable:
The following roles are defined for this profile:

Audio Gateway (AG) – This device acts as either the end point, or a relay, for telephony quality audio, which is typically two-way. Exemplary devices acting as Audio Gateways are cellular phones and personal computers.

Headset (HS) – This device provides the Audio Gateway’s remote audio input and output mechanism.

The abbreviations AG and HS are used in the rest of this document to designate these roles.

2.3 User requirements and Scenarios

The Headset profile defines the protocols and procedures that shall be used by devices implementing this use case.

The following restrictions apply to this profile:

- The profile mandates CVSD encoding for audio transmitted over the Bluetooth SCO link. The resulting audio is monophonic, with a quality that – under normal circumstances – will be comparable to standard cellular phone audio quality.
- Only one audio connection at a time is supported by a single instance of this profile.
The AG controls the SCO link establishment and release. The headset directly connects (disconnects) the internal audio streams upon SCO link establishment (release). All SCO links are, by definition, full duplex.

The use of eSCO [3] by co-operating devices is not prohibited, but will not be further specified in this profile.¹

The profile offers only basic interoperability – multi-party call handling at the AG, for example, is not specified.

The only required HS user interface is a button-press event. The HS can signal the AG that the button has been pressed, but the ability to send button-press and button-release as two distinct signals is not defined.

2.4 Profile Fundamentals
Depending on the underlying core specification version², an HS may be able to use the services of the AG without the creation of a secure connection. It is the implementer's responsibility to enforce security on devices that support authentication and/or encryption in the execution of this profile. If baseband authentication and/or encryption is desired, the two devices shall create a secure connection, using the authentication procedure as described in the Generic Access profile.

A link must be established before establishing an audio connection. Normally, this requires paging of the other device.

There are no fixed master/slave roles.

The AG and HS provide serial port emulation by using the serial port profile, which in turn uses the RFCOMM protocol. The serial port emulation is used to exchange the user data including modem control signals and AT commands and responses. AT commands are parsed by the AG and responses are sent to the HS.

2.5 Conformance
If conformance to this profile is claimed, all capabilities indicated as mandatory for this profile shall be supported in the specified manner (process-mandatory). This also applies for all optional and conditional capabilities for which support is indicated. All mandatory capabilities, and optional and conditional capabilities for which support is indicated, are subject to verification as part of the Bluetooth qualification program.

¹ Interested parties should refer to the Hands-Free Profile, version 1.5 for a relevant discussion of eSCO.
² Core specifications 2.1 and later require secure connections.
3 Application Layer

This section describes the feature requirements for units complying with the Headset Profile.

Table 3.1 shows the feature requirements made by this profile.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Support in HS</th>
<th>Support in AG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Incoming audio connection</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>2. Outgoing audio connection</td>
<td>M</td>
<td>O</td>
</tr>
<tr>
<td>3. Audio connection transfer</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>4. Remote audio volume control</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

Table 3.1: Application layer procedures

In the table above, incoming and outgoing shall be interpreted from the headset (HS) point of view.

Table 3.2 maps each feature to the procedures used for that feature. All procedures are mandatory if the feature is supported.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Procedure</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Incoming audio connection</td>
<td>Incoming audio connection establishment</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>Audio connection release</td>
<td>4.4</td>
</tr>
<tr>
<td>2. Outgoing audio connection</td>
<td>Outgoing audio connection establishment</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>Audio connection release</td>
<td>4.4</td>
</tr>
<tr>
<td>3. Audio connection transfer</td>
<td>Audio connection transfer</td>
<td>4.6</td>
</tr>
<tr>
<td>4. Remote audio volume control</td>
<td>Remote audio volume control</td>
<td>4.7</td>
</tr>
</tbody>
</table>

Table 3.2: Application layer feature to procedure mapping
4 Headset Control Interoperability Requirements

4.1 Introduction

The interoperability requirements for the Headset Control entity are completely contained in this chapter. Sections 4.2 through Section 4.7 specify the requirements for the procedures directly relating to the application layer features.

Section 4.8 specifies the AT commands and results codes used for signaling purposes.

Section 4.9 specifies how the layers beneath the Headset Control entity are used to establish and release a connection.

4.2 Audio Gateway Initiated ACL Connection Establishment

Upon an internal or user generated event, the AG will initiate connection establishment (see Section 4.8.1), once the connection is established, there are then two options as described in the Sections 4.2.1 and Sections 4.2.2. The SCO link establishment can take place anytime after the ACL connection establishment.

4.2.1 Using In-Band Ringing

An in-band ring tone is an audible alert, such as a tone, melody, short music clip, that is transmitted by the AG, to the HS, to alert the user of an event; typically an incoming call. As shown in Figure 4.1, the AG may generate an in-band ring tone using the SCO connection to the HS. The AG decides how to use this SCO connection. When using an in-band ring tone, the AG shall not send the RING unsolicited result code to the HS.

3 Please note this behavior differs from the Hands-Free Profile versions 1.0 and 1.5, which do send RING when using in-band ring tone notification.
4.2.2 Using the RING message

As shown in Figure 4.2, the AG will repeatedly send the RING unsolicited result code to the HS for a time period decided by the AG. The RING may be repeated for as long as the connection establishment is pending.

Figure 4.1: Incoming audio connection establishment using in-band ring tone
4.3 **Headset Initiated ACL Connection Establishment**

A headset (HS) originated ACL connection is initiated (see Section 4.9) by a user action (e.g. pressing a button on the headset). Upon completion of a connection establishment that was initiated by pressing the "headset button", the HS shall send the AT+CKPD=200 command to the AG. If the HS connection is initiated by an event other than a headset button press, the HS shall not send AT+CKPD=200.

The AG may initiate a SCO connection after the completion of the ACL connection establishment, but before receiving the AT+CKPD=200 command from the HS. This may be desirable when the AG is a mobile phone. In all cases, the AG is responsible for establishing the SCO link if needed. Further internal actions may be needed on the AG to internally establish and/or route the audio stream to the HS.

As shown in Figure 4.3, the SCO link connection may be set up prior to receiving the AT+CKPD=200 command. If this is not the case, then the SCO link connection shall be set up after receiving the AT+CKPD=200 command.

4 For a cellular phone a cellular call may need to be established, e.g. using last dialled number or a pre-programmed number. For a personal computer this may relate to VoIP calls or voice command/prompt interaction with the computer.
4.4 Headset Control Following Connection Establishment

While a headset profile connection exists between AG and HS, and upon the receipt of a user initiated action (for example, button press) on the HS, the HS shall send the AT+CKPD=200 command to the AG. The action performed by the AG on receipt of the AT+CKPD=200 command is implementation dependent. The actions performed by the AG may be dictated by the state the AG is in at the time it received the command.

4.5 Audio Connection Release

Figure 4.3: Audio connection establishment

Figure 4.4: Audio connection release – HS initiated
The AG may release the Audio connection (SCO) upon an internal event in the AG or after the AG receives an indication of a user initiated action (e.g. button press) from the AG or HS.

The HS may initiate an Audio connection (SCO) release in circumstances such as power-down event while an Audio connection (SCO) is established.

Irrespective of the initiating side, the AG is responsible for releasing the profile’s serial port (RFCOMM) connection (see Section 4.9.1.2).

4.6 Audio Connection Transfer

An audio connection can be transferred from AG to HS or from HS to AG. The connection is transferred to the device initiating the transfer.
4.6.1 Audio Connection Transfer from AG to HS

The audio connection transfer from AG to HS is initiated by a user action on the HS side. To effect this transfer, the HS shall send the AT+CKPD=200 command to the AG.

Figure 4.2: Audio connection transfer from AG to HS

4.6.2 Audio Connection Transfer from HS to AG

The audio connection transfer from HS to AG is initiated by a user action on the AG. This user action shall result in the AG releasing the SCO connection.

Figure 4.3: Audio connection transfer from HS to AG

4.7 Remote Audio Volume Control

The AG can control the gain of the microphone or speaker of the HS by sending unsolicited result codes +VGM or +VGS respectively. There is no restriction on the number or order of these result codes. Support for remote audio volume control is
optional, so an implementation may support none, either, or both of the controls for microphone volume and speaker volume.

Both the speaker and microphone gain are represented as parameter to the +VGS and +VGM, on a scale from 0 to 15. The values are absolute values, relating to a particular (implementation-dependent) volume level controlled by the HS.

The HS may store the VGS and VGM settings at connection release. At connection establishment, the HS may restore the previous settings using the AT commands AT+VGS and AT+VGM. In case physical mechanisms (buttons, dials etc.) means are implemented on the HS to control the volume levels, the HS shall also use the AT commands AT+VGS and AT+VGM to inform the AG of any changes in the volume levels.
4.8 AT Commands and Result Codes

4.8.1 General
The command line termination character shall be carriage return (IA5 0/13). The response formatting character shall be line feed (IA5 0/10). The AG shall not echo command characters\(^5\). The AG shall transmit result codes, using the verbose (rather than numeric) format.

The format for a command from the HS to the AG is thus:

\[
\text{AT}<\text{cmd}>=<\text{value}><\text{cr}>
\]

If the command is processed successfully, the resulting response from the AG to the HS is:

\[
<\text{cr}><\text{lf}>\text{OK}<\text{cr}><\text{lf}>
\]

If the command is not processed successfully, or is not recognized, the resulting response from the AG to the HS is:

\[
<\text{cr}><\text{lf}>\text{ERROR}<\text{cr}><\text{lf}>
\]

The format for an unsolicited result code (such as RING) from the AG to the HS is:

\[
<\text{cr}><\text{lf}><\text{result code}><\text{cr}><\text{lf}>
\]

\(^5\)This is the opposite of the default recommended by V.250
4.8.2 AT Capabilities Re-used from V.250

The mandatory set of AT commands and unsolicited result codes are indicated in Table 4.1.

<table>
<thead>
<tr>
<th>AT capability</th>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RING – See note 1</td>
<td>RING</td>
<td>The Incoming call indication of V.250 [1], Section 6.3.4.</td>
</tr>
<tr>
<td>Headset button press</td>
<td>+CKPD=200</td>
<td>Command issued by HS to indicate that the button has been pressed</td>
</tr>
</tbody>
</table>

Table 4.1: Mandatory AT capabilities

Note 1: Mandatory for HS to support RING, optional for AG

4.8.3 Bluetooth-defined AT capabilities

Optionally, the AT capabilities as indicated in Table 4.2 may be supported.

<table>
<thead>
<tr>
<th>AT capability</th>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microphone gain</td>
<td>+VGM=<gain ></td>
<td>Unsolicited result code issued by the AG to set the microphone gain of the HS. <gain> is a decimal numeric constant, relating to a particular (implementation-dependent) volume level controlled by the HS.</td>
</tr>
<tr>
<td>Speaker gain</td>
<td>+VGS=<gain></td>
<td>Unsolicited result code issued by the AG to set the speaker gain of the HS. <gain> is a decimal numeric constant, relating to a particular (implementation-dependent) volume level controlled by the HS.</td>
</tr>
<tr>
<td>Microphone gain level report</td>
<td>+VGM=<gain ></td>
<td>Command issued by the HS to report the current microphone gain level setting to the AG. <gain> is a decimal numeric constant, relating to a particular (implementation-dependent) volume level controlled by the HS.</td>
</tr>
<tr>
<td>Speaker gain level indication report</td>
<td>+VGS=<gain></td>
<td>Command issued by the HS to report the current speaker gain level setting to the AG. <gain> is a decimal numeric constant, relating to a particular (implementation-dependent) volume level controlled by the HS.</td>
</tr>
</tbody>
</table>

Table 4.2: Optional AT capabilities

4.9 Lower Layer Handling

This section describes how the layers below the Headset Control entity are used to establish and release a connection.
4.9.1 Connection Handling

4.9.1.1 Connection establishment

Either the HS or the AG may initiate connection establishment. If there is no RFCOMM session between the AG and the HS, the initiating device shall first initialize RFCOMM. Connection establishment shall be performed as described in Section 7.3 of GAP and Section 3 of SPP.

4.9.1.2 Connection release

When the audio connection is released, the profile’s serial port (RFCOMM) connection may be released as well.

Since it is possible that multiple profiles are active between the two devices, the Headset Profile should not initiate an ACL level disconnection, that action should be left to a lower layer that can determine when it is appropriate to disconnect the physical link.

4.9.1.3 Sniff mode

The use of sniff mode is recommended\(^6\) for devices that need to reduce power consumption while maintaining an active connection. This can be used for ACL connection when a call is in progress or when a call is not in progress. Note; it is not necessary to exit sniff mode when exchanging AT commands and responses.

\(^6\) Support for sniff mode may be mandatory depending on the underlying core stack version.
5 Serial Port Profile

This profile requires compliance with the Serial Port Profile. The following text together with the associated sub-clauses defines the requirements with regard to this profile, in addition to the requirements as defined in the Serial Port Profile.

As with the Headset Profile, both the AG and the HS can initiate connection establishment. For the purposes of reading the Serial Port Profile, both the AG and the HS can assume the role of Device A and B.

5.1 RFCOMM Interoperability Requirements

For the RFCOMM layer, no additions to the requirements as stated in the Serial Port Profile Section 4 shall apply.

5.2 L2CAP Interoperability Requirements

For the L2CAP layer, no additions to the requirements as stated in the Serial Port Profile Section 5 shall apply [3].

5.3 SDP Interoperability Requirements

This profile [3] defines following service records for the headset and the audio gateway respectively.

The codes assigned to the mnemonics used in the Value column as well as the codes assigned to the attribute identifiers (if not specifically mentioned in the AttrID column) can be found on the Bluetooth Assigned Numbers web page.

<table>
<thead>
<tr>
<th>Item</th>
<th>Definition</th>
<th>Type</th>
<th>Value</th>
<th>AttrID</th>
<th>Status</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServiceClassIDList</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ServiceClass0</td>
<td>UUID Headset</td>
<td>M</td>
<td></td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ServiceClass1</td>
<td>UUID Generic Audio</td>
<td>M</td>
<td></td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ProtocolDescriptorList</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol0</td>
<td>UUID L2CAP</td>
<td>M</td>
<td></td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol1</td>
<td>UUID RFCOMM</td>
<td>M</td>
<td></td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol Specific Parameter0</td>
<td>Server channel #</td>
<td>M</td>
<td></td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BluetoothProfileDescriptorList</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profile0</td>
<td>Supported Profiles</td>
<td></td>
<td></td>
<td>M</td>
<td></td>
<td>Headset</td>
</tr>
<tr>
<td>Param0</td>
<td>Profile Version</td>
<td>M</td>
<td>0x0102</td>
<td>M</td>
<td>0x0102</td>
<td></td>
</tr>
<tr>
<td>ServiceName</td>
<td>Display able Text name</td>
<td>O</td>
<td>Service-provider defined</td>
<td>O</td>
<td>'Headset'</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.1: Service Record for Headset

<table>
<thead>
<tr>
<th>Item</th>
<th>Definition</th>
<th>Type</th>
<th>Value</th>
<th>AttrID</th>
<th>Status</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote audio volume control</td>
<td></td>
<td>Boolean</td>
<td>True/False</td>
<td>O</td>
<td></td>
<td>False</td>
</tr>
</tbody>
</table>

Table 5.2: Service Record for the Audio Gateway

<table>
<thead>
<tr>
<th>Item</th>
<th>Definition</th>
<th>Type</th>
<th>Value</th>
<th>AttrID</th>
<th>Status</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServiceClassIDList</td>
<td></td>
<td>UUID</td>
<td>Headset</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ServiceClass0</td>
<td></td>
<td>UUID</td>
<td>Audio</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ServiceClass1</td>
<td></td>
<td>UUID</td>
<td>Gateway</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ProtocolDescriptorList</td>
<td></td>
<td>UUID</td>
<td>L2CAP</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol0</td>
<td></td>
<td>UUID</td>
<td>RFCOMM</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol1</td>
<td></td>
<td>Server</td>
<td>N=server</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol Specific Parameter0</td>
<td></td>
<td>Channel</td>
<td>channel #</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BluetoothProfileDescriptorList</td>
<td></td>
<td>Profile</td>
<td>Headset</td>
<td>M</td>
<td>Headset</td>
<td></td>
</tr>
<tr>
<td>Profile0</td>
<td>Supported Profile</td>
<td>Server</td>
<td>0x0102(^7)</td>
<td>M</td>
<td>0x0102</td>
<td></td>
</tr>
<tr>
<td>Profile0</td>
<td>Profile Version</td>
<td>Profile</td>
<td>Server</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profile0</td>
<td>Profile Version</td>
<td>Uint16</td>
<td>0x0102(^7)</td>
<td>M</td>
<td>0x0102</td>
<td></td>
</tr>
<tr>
<td>ServiceName</td>
<td>Display able Text name</td>
<td>String</td>
<td>Service-provider defined</td>
<td>O</td>
<td>'Voice gateway'</td>
<td></td>
</tr>
</tbody>
</table>

5.4 Link Manager (LM) Interoperability Requirements

In addition to the requirements for the Link Manager as stated in the Serial Port Profile, this profile mandates support for SCO links, in both the HS and AG.

5.5 Link Control (LC) Interoperability Requirements

CVSD audio shall be supported in both the AG and HS.

5.5.1 Class of Device

A device that is active in the HS role shall, in the Class of Device field:

\(^7\) Indicating version 1.2
Headset Profile (HSP)

1. Set the bit ‘Audio’ in the Service Class field

Further, a device may optionally:

1. Indicate ‘Audio’ as Major Device class
2. Indicate “Headset” as the Minor Device class

An inquiring AG may use the Service Class field to filter the inquiry responses. The Device Class fields should not be used as filters since many devices support multiple profiles.
6 Generic Access Profile

This section defines the support requirements for the capabilities as defined in Generic Access Profile [3].

6.1 Modes

The table shows the support status for Modes within this profile.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Support in HS</th>
<th>Support in AG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Discoverability modes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-discoverable mode</td>
<td>M</td>
<td>O</td>
</tr>
<tr>
<td>Limited discoverable mode</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>General discoverable mode</td>
<td>M</td>
<td>O</td>
</tr>
<tr>
<td>2 Connectability modes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-connectable mode</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Connectable mode</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>3 Pairing modes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-pairable mode</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Pairable mode</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

Table 6.1: Modes

6.2 Security Aspects

No changes to the requirements as stated in the Generic Access Profile [3].

6.3 Idle Mode Procedures

Support for general inquiry mode is mandatory in the AG.
7 References

[2] ETS 300 916 (GSM 07.07) version 5.6.0

[3] Specification of the Bluetooth System; Core, v1.2 or later
8 List of Figures

Figure 1.1: Arrows used in signaling diagrams ... 6
Figure 2.1: Protocol model .. 7
Figure 2.2: Headset profile, example with cellular phone .. 8
Figure 2.3: Headset profile, example with personal computer .. 8
Figure 4.1: Incoming audio connection establishment using in-band ring tone 12
Figure 4.2: Audio connection transfer from AG to HS ... 16
Figure 4.3: Audio connection transfer from HS to AG ... 16
Figure 4.4: Audio volume control – example flow .. 17
Figure 4.5: Volume level synchronization – example flow .. 18
9 List of Tables

Table 3.1: Application layer procedures
Table 3.2: Application layer feature to procedure mapping
Table 4.1: Mandatory AT capabilities
Table 4.2: Optional AT capabilities
Table 5.1: Service Record for Headset
Table 5.2: Service Record for the Audio Gateway
Table 6.1: Modes