Cycling Power Profile (CPP)

Bluetooth® Test Specification

- **Revision**: CPP.TS.1.1.3
- **Revision Date**: 2017-11-28
- **Group Prepared By**: BTI
- **Feedback Email**: bti-main@bluetooth.org

Abstract:
This document defines test structures and procedures for conformance test of products implementing the Cycling Power Profile Specification.
Revision History

<table>
<thead>
<tr>
<th>Revision History</th>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0.9.4</td>
<td>2013-02-10</td>
<td>Version approved for prototyping.</td>
</tr>
<tr>
<td>1.0.0</td>
<td>2013-04-30</td>
<td>Release for publication.</td>
</tr>
<tr>
<td>1.0.1r1</td>
<td>2013-05-16</td>
<td>TSE 5175: Updated TCMT mapping for TP/CPF/CO/BV-16-I to “CPP 10/3 and CPP 11/3”</td>
</tr>
<tr>
<td>1.0.1</td>
<td>2013-07-02</td>
<td>Prepare for Publication</td>
</tr>
</tbody>
</table>
| 1.02r1 | 2013-08-16 | TCRL 2013-2
TSE 5240: Updated reserved bits value from “0xA4” to “0xC4” in TP/CPF/CO/BI-05-I.
TSE 5296: Updated first sentence of the test procedure in TP/CPD/CO/BV-16-I to add, “and a disconnection may occur between the two tests” for clarification. |
| 1.0.2 | 2013-12-03 | Prepare for Publication |
| 1.0.3r00 | 2014-04-11 | TSE 5452: Updated TCMT Mapping for TP/CPD/CO/BV-01-I. |
| 1.0.3r01 | 2014-06-01 | Added Pass/Fail Verdict Conventions according to applicable test specification template. |
| 1.0.3 | 2014-07-07 | TCRL 2014-1 Publication |
| 1.04r01 | 2014-09-05 | TSE 5891: Updated the values in the test procedure of TP/CPF/CO/BV-22-I.
TSE 5870: Updated the value for “Right Pedal” to 0x80 in TP/CPF/CO/BV-16-I, TP/CPF/CO/BV-17-I and TP/CPF/CO/BV-18-I. |
| 1.0.4r02 | 2014-10-06 | TSE 5958: Updated TCMT mapping for TP/CPF/CO/BV-24-I. |
| 1.0.4 | 2014-12-05 | Prepare for TCRL 2014-2 publication |
| 1.0.5r00 | 2015-05-10 | TSE 6126: Revised accumulated torque values in TP/CPF/CO/BV-07-I
TSE 6379: Revised mapping in TCMT for TP/CPF/OB/BV-28-I through 35-I |
| 1.0.5 | 2015-07-14 | Prepared for TCRL 2015-1 publication |
| 1.1.0r00 | 2015-11-02 | Added tests cases for Cycling Power Profile v1.1 |
| 1.1.0r01 | 2015-11-02 | Updated Test Case Mapping Table to match added table in the ICS
Removed test case [Receive Cycling Power Measurement Notifications from a CP Sensor – Unknown Distributed System |
Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.0r02</td>
<td>2015-11-04</td>
<td>Fixed Test Case Mapping Table;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fixed numbering formatting issue in section 4.3.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fixed test procedure and pass criteria in section 4.4.48.</td>
</tr>
<tr>
<td>1.1.0r03</td>
<td>2015-11-11</td>
<td>Removed one remaining 'Fail verdict' in section 4.4.18.</td>
</tr>
<tr>
<td>1.1.0r04</td>
<td>2016-01-05</td>
<td>Converted to current document template.</td>
</tr>
<tr>
<td>1.1.0r05</td>
<td>2016-02-15</td>
<td>Minor editorial changes (formatting, spelling and punctuation).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fixed Test Case Mapping table</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fixed reference in "Initial Condition" of test cases in section 4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated Test Case Mapping Table.</td>
</tr>
<tr>
<td>1.1.0r06</td>
<td>2016-04-04</td>
<td>Addressed BTI comments; fixed cross-reference; changed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test Case Mapping Table to simplify triggering of tests cases</td>
</tr>
<tr>
<td></td>
<td></td>
<td>specific to V1.0 or to V1.1.</td>
</tr>
<tr>
<td>1.1.0r07</td>
<td>2016-04-04</td>
<td>Updated TCMT to match removal of table 12 in the ICS</td>
</tr>
<tr>
<td>1.1.0r08</td>
<td>2016-04-07</td>
<td>Updated section 3.2 with test indicating that some tests cases</td>
</tr>
<tr>
<td></td>
<td></td>
<td>require 2 lower testers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated figure 4.19 with two lower testers.</td>
</tr>
<tr>
<td>1.1.0r09</td>
<td>2016-04-08</td>
<td>Fixed indent on test case section heading</td>
</tr>
<tr>
<td>1.1.0</td>
<td>2016-04-19</td>
<td>Approved by BTI</td>
</tr>
<tr>
<td>1.1.0</td>
<td>2016-05-03</td>
<td>Specification version 1.1 adopted by the Bluetooth SIG BoD.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TSE 6936: Updated Initial Condition of test case TP/CPF/CO/BV-20-I.</td>
</tr>
<tr>
<td>1.1.0</td>
<td>2016-05-09</td>
<td>Prepared for publication</td>
</tr>
<tr>
<td>1.1.1r00</td>
<td>2016-05-20</td>
<td>Converted to new Test Case ID conventions as defined in TSTO v4.1.</td>
</tr>
<tr>
<td>1.1.1</td>
<td>2016-07-14</td>
<td>Prepared for TCRL 2016-1 publication.</td>
</tr>
<tr>
<td>1.1.2r00</td>
<td>2016-02-17</td>
<td>TSE 7497: Updated mapping for CPP/COL/CPF/BV-22-I and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CPP/COL/CPF/BV-23-I to CPP 10/12 AND CPP 10/22.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TSE 8445: Corrected values in CPP/COL/CPF/BV-15-I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Accumulated Torque column for rows 3-7 to Table 4.11:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Receive Cycling Power Measurement Notifications –</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Accumulated Torque Value Decreases.</td>
</tr>
<tr>
<td>1.1.2r01</td>
<td>2017-03-20</td>
<td>TSE 8428: Updated Test Case Mapping Table for</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CPP/COL/CPF/BV-12-I and CPP/COL/CPF/BV-13-I.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Removed</td>
</tr>
</tbody>
</table>
Revision History

<table>
<thead>
<tr>
<th>Revision History</th>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CPP/COL/CPF/BV-12-I from CPP 10/11 and added it to new mapping CPP 10/11 AND CPP 13/3. Removed CPP/COL/CPF/BV-13-I from CPP 10/12 and added it to new mapping CPP 10/12 AND CPP 13/3. TSE 8444: Corrected values in Accumulated Energy Value column for rows 3-5 to Table 4.7 in CPP/COL/CPF/BV-11-I.</td>
</tr>
<tr>
<td>1.1.2r02</td>
<td>2017-04-20</td>
<td>TSE 8518: Updated table 4.12 for CPP/COL/CPF/BV-17-I by modifying row 1 and 3, and adding row 4. Updated Table 4.28 for CPP/COL/CPF/BV-39-I by modifying row 1 and 3, and adding row 4. TSE 8519: Updated Table 4.13 for CPP/COL/CPF/BV-18-I by modifying row 1 and 3, and adding row 4. Updated Table 4.29 for CPP/COL/CPF/BV-40-I by modifying row 1 and 3, and adding row 4.</td>
</tr>
<tr>
<td>1.1.2</td>
<td>2017-06-26</td>
<td>Approved by BTI. Prepared for TCRL 2017-1 publication.</td>
</tr>
<tr>
<td>1.1.3r00</td>
<td>2017-08-21</td>
<td>TSE 9248: Updated Initial Condition text for CPP/COL/CPF/BV-38-I.</td>
</tr>
<tr>
<td>1.1.3</td>
<td>2017-11-28</td>
<td>Approved by BTI. Prepared for TCRL 2017-2 publication.</td>
</tr>
</tbody>
</table>

Contributors

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob Hughes</td>
<td>Intel</td>
</tr>
<tr>
<td>Guillaume Schatz</td>
<td>Polar</td>
</tr>
<tr>
<td>Leif-Alexandre ASCHEHOUG</td>
<td>Nordic Semiconductor</td>
</tr>
<tr>
<td>Jawid Mirani</td>
<td>Cloud2GND</td>
</tr>
</tbody>
</table>
Use of this specification is your acknowledgement that you agree to and will comply with the following notices and disclaimers. You are advised to seek appropriate legal, engineering, and other professional advice regarding the use, interpretation, and effect of this specification.

Use of Bluetooth specifications by members of Bluetooth SIG is governed by the membership and other related agreements between Bluetooth SIG and its members, including those agreements posted on Bluetooth SIG’s website located at www.bluetooth.com. Any use of this specification by a member that is not in compliance with the applicable membership and other related agreements is prohibited and, among other things, may result in (i) termination of the applicable agreements and (ii) liability for infringement of the intellectual property rights of Bluetooth SIG and its members.

Use of this specification by anyone who is not a member of Bluetooth SIG is prohibited and is an infringement of the intellectual property rights of Bluetooth SIG and its members. The furnishing of this specification does not grant any license to any intellectual property of Bluetooth SIG or its members. THIS SPECIFICATION IS PROVIDED “AS IS” AND BLUETOOTH SIG, ITS MEMBERS AND THEIR AFFILIATES MAKE NO REPRESENTATIONS OR WARRANTIES AND DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, TITLE, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR THAT THE CONTENT OF THIS SPECIFICATION IS FREE OF ERRORS. For the avoidance of doubt, Bluetooth SIG has not made any search or investigation as to third parties that may claim rights in or to any specifications or any intellectual property that may be required to implement any specifications and it disclaims any obligation or duty to do so.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, BLUETOOTH SIG, ITS MEMBERS AND THEIR AFFILIATES DISCLAIM ALL LIABILITY ARISING OUT OF OR RELATING TO USE OF THIS SPECIFICATION AND ANY INFORMATION CONTAINED IN THIS SPECIFICATION, INCLUDING LOST REVENUE, PROFITS, DATA OR PROGRAMS, OR BUSINESS INTERRUPTION, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, AND EVEN IF BLUETOOTH SIG, ITS MEMBERS OR THEIR AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF THE DAMAGES.

If this specification is a prototyping specification, it is solely for the purpose of developing and using prototypes to verify the prototyping specifications at Bluetooth SIG sponsored IOP events. Prototyping Specifications cannot be used to develop products for sale or distribution and prototypes cannot be qualified for distribution.

Products equipped with Bluetooth wireless technology (“Bluetooth Products”) and their combination, operation, use, implementation, and distribution may be subject to regulatory controls under the laws and regulations of numerous countries that regulate products that use wireless non-licensed spectrum. Examples include airline regulations, telecommunications regulations, technology transfer controls and health and safety regulations. You are solely responsible for complying with all applicable laws and regulations and for obtaining any and all required authorizations, permits, or licenses in connection with your use of this specification and development, manufacture, and distribution of Bluetooth Products. Nothing in this specification provides any information or assistance in connection with complying with applicable laws or regulations or obtaining required authorizations, permits, or licenses.

Bluetooth SIG is not required to adopt any specification or portion thereof. If this specification is not the final version adopted by Bluetooth SIG’s Board of Directors, it may not be adopted. Any specification adopted by Bluetooth SIG’s Board of Directors may be withdrawn, replaced, or modified at any time. Bluetooth SIG reserves the right to change or alter final specifications in accordance with its membership and operating agreements.

Copyright © 2013–2017. All copyrights in the Bluetooth Specifications themselves are owned by Apple Inc., Ericsson AB, Intel Corporation, Lenovo (Singapore) Pte. Ltd., Microsoft Corporation, Nokia Corporation, and Toshiba Corporation. The Bluetooth word mark and logos are owned by Bluetooth SIG, Inc. Other third-party brands and names are the property of their respective owners.
Contents

1 Scope ... 10

2 References, Definitions, and Abbreviations ... 11
 2.1 References ... 11
 2.2 Abbreviations ... 11

3 Test Suite Structure (TSS) ... 12
 3.1 Overview ... 12
 3.2 Test Strategy .. 12
 3.3 Test Groups .. 13

4 Test Cases .. 14
 4.1 Introduction ... 14
 4.1.1 Test Case Identification Conventions .. 14
 4.1.2 Conformance .. 14
 4.1.3 Pass/Fail Verdict Conventions ... 15
 4.2 Setup Preambles .. 15
 4.2.1 Set up LE Transport ... 15
 4.2.2 Set up BR/EDR Transport ... 15
 4.2.3 Collector: Configure CP Sensor for use with Cycling Power Control Point 15
 4.2.4 LE Collector: Scan to detect Sensor Connectable Advertisements and initiate a connection 16
 4.2.5 LE CP Observer: Scan to detect Sensor Non-Connectable Advertisements 17
 4.2.6 BR/EDR Collector .. 17
 4.2.6.1 Unbonded Devices ... 17
 4.2.6.2 Bonded Devices .. 18
 4.3 Discover Services and Characteristics .. 18
 4.3.1 CPP/COL/CPD/BV-01-I [Discover Cycling Power Service over LE] 18
 4.3.2 CPP/COL/CPD/BV-02-I [Discover Device Information Service over LE] 19
 4.3.3 CPP/COL/CPD/BV-03-I [Discover Battery Service over LE] 20
 4.3.4 CPP/COL/CPD/BV-04-I [SDP Service Discovery] .. 20
 4.3.5 CPP/SEN/CPD/BV-05-I [Cycling Power Service not discoverable over BR/EDR] 21
 4.3.6 CPP/COL/CPD/BV-06-I [Discover Cycling Power Feature Characteristic] 21
 4.3.7 CPP/COL/CPD/BV-07-I [Discover Cycling Power Measurement Characteristic] 22
 4.3.8 CPP/COL/CPD/BV-08-I [Discover Cycling Power Measurement – Client Characteristic Configuration Descriptor] ... 23
 4.3.9 CPP/COL/CPD/BV-09-I [Discover Cycling Power Measurement – Server Characteristic Configuration Descriptor] ... 24
 4.3.10 CPP/COL/CPD/BV-10-I [Discover Sensor Location Characteristic] 25
 4.3.11 CPP/COL/CPD/BV-11-I [Discover Cycling Power Control Point Characteristic] 25
 4.3.12 CPP/COL/CPD/BV-12-I [Discover Cycling Power Control Point – Client Characteristic Configuration Descriptor] ... 26
 4.3.13 CPP/COL/CPD/BV-13-I [Discover Cycling Power Vector Characteristic] 27
 4.3.14 CPP/COL/CPD/BV-14-I [Discover Cycling Power Vector – Client Characteristic Configuration Descriptor] ... 28
 4.3.15 CPP/COL/CPD/BV-15-I [Discover Device Information Service Characteristics] 29
 4.3.16 CPP/COL/CPD/BV-16-I [Read Device Information Service Characteristics] 30
 4.3.17 CPP/COL/CPD/BV-17-I [Discover Battery Service Characteristics] 31
 4.3.18 CPP/COL/CPD/BV-18-I [Read Battery Level Characteristic] 32
 4.4 Cycling Power Features .. 33
 4.4.1 CPP/SEN/CPF/BV-01-I [Cycling Power Service UUID in AD] 33
4.4.2 CPP/SEN/CPF/BV-02-I [Local Name included in AD or Scan Response] ...33
4.4.3 CPP/SEN/CPF/BV-03-I [Appearance included in AD or Scan Response] ...34
4.4.4 CPP/COL/CPF/BV-04-I [Read Cycling Power Feature characteristic] ..35
4.4.5 CPP/COL/CPF/BL-01-I [Read Cycling Power Feature characteristic with reserved value]36
4.4.6 CPP/COL/CPF/BV-05-I [Configure Cycling Power Measurement for Notification]37
4.4.7 CPP/COL/CPF/BV-06-I [Receive Cycling Power Measurement Notifications]38
4.4.8 CPP/COL/CPF/BV-07-I [Receive Cycling Power Measurement Notifications – Accumulated Torque Roll Over] 40
4.4.9 CPP/COL/CPF/BV-08-I [Receive Cycling Power Measurement Notifications – Last Wheel Event Time Roll Over] 41
4.4.10 CPP/COL/CPF/BV-09-I [Receive Cycling Power Measurement Notifications – Cumulative Crank Revolutions Roll Over] ..42
4.4.11 CPP/COL/CPF/BV-10-I [Receive Cycling Power Measurement Notifications – Last Crank Event Time Roll Over] 43
4.4.12 CPP/COL/CPF/BV-11-I [Receive Cycling Power Measurement Notifications – Accumulated Energy Roll Over] 44
4.4.13 CPP/COL/CPF/BV-12-I [Receive Cycling Power Measurement Notifications – Wheel Revolution Data After Link Loss] ...45
4.4.15 CPP/COL/CPF/BV-14-I [Receive Cycling Power Measurement Notifications – Reverse Wheel Revolution] ..48
4.4.16 CPP/COL/CPF/BV-15-I [Receive Cycling Power Measurement Notifications – Accumulated Torque Value Decreases] ...49
4.4.17 CPP/COL/CPF/Bi-02-I [Receive Cycling Power Measurement Notifications with reserved flags]50
4.4.18 CPP/COL/CPF/Bi-03-I [Receive Cycling Power Measurement Notifications with additional octets not represented in the flags field] ...51
4.4.19 CPP/COL/CPF/BV-16-I [Receive Cycling Power Measurement Notifications from a Distributed Power System] 52
4.4.20 CPP/COL/CPF/BV-17-I [Receive Cycling Power Measurement Notifications from a Distributed Power System – Calculates Total Instantaneous Power] ..53
4.4.21 CPP/COL/CPF/BV-18-I [Receive Cycling Power Measurement Notifications from a Distributed Power System – Calculates Pedal Power Balance] ...54
4.4.22 CPP/COL/CPF/BV-19-I [Read Sensor Location characteristic] ..55
4.4.23 CPP/COL/CPF/Bi-04-I [Read Sensor Location characteristic with reserved value]56
4.4.24 CPP/COL/CPF/BV-20-I [Configure Cycling Power Vector for Notification] ..57
4.4.25 CPP/COL/CPF/BV-21-I [Receive Cycling Power Vector Notifications] ...59
4.4.26 CPP/COL/CPF/BV-22-I [Receive Cycling Power Vector Notifications – Cumulative Crank Revolutions Roll Over] 60
4.4.27 CPP/COL/CPF/BV-23-I [Receive Cycling Power Vector Notifications – Last Crank Event Time Roll Over] 61
4.4.28 CPP/COL/CPF/Bi-05-I [Receive Cycling Power Vector Notifications with reserved flags]62
4.4.29 CPP/COL/CPF/BV-24-I [Lost Bond Procedure when using LE Transport] ..63
4.4.30 CPP/COL/CPF/BV-25-I [Lost Bond Procedure when using BR/EDR transport] ..64
4.4.31 CPP/COL/CPF/BV-26-I [Configure Cycling Power Measurement for Broadcast]65
4.4.32 CPP/OBS/CPF/BV-27-I [Receive Cycling Power Measurement Broadcast] ...66
4.4.34 CPP/OBS/CPF/BV-29-I [Receive Cycling Power Measurement Broadcast – Last Wheel Event Time Roll Over] 68
4.4.35 CPP/OBS/CPF/BV-30-I [Receive Cycling Power Measurement Broadcast – Cumulative Crank Revolutions Roll Over] ...69
4.4.36 CPP/OBS/CPF/BV-31-I [Receive Cycling Power Measurement Broadcast – Last Crank Event Time Roll Over] 70
4.4.37 CPP/OBS/CPF/BV-32-I [Receive Cycling Power Measurement Broadcast – Accumulated Energy Roll Over] 71
4.4.38 CPP/OBS/CPF/BI-06-I [Receive Cycling Power Measurement Broadcast with reserved flags]........72
4.4.39 CPP/OBS/CPF/BI-07-I [Receive Cycling Power Measurement Broadcast with additional octets not represented in the flags field]........73
4.4.40 CPP/OBS/CPF/BV-33-I [Receive Cycling Power Measurement Broadcast from a Distributed Power System] 73
4.4.41 CPP/OBS/CPF/BV-34-I [Receive Cycling Power Measurement Broadcast from a Distributed Power System – Calculates Total Instantaneous Power]..74
4.4.42 CPP/OBS/CPF/BV-35-I [Receive Cycling Power Measurement Broadcast from a Distributed Power System – Calculates Pedal Power Balance]..75
4.4.43 CPP/COL/CPF/BV-36-I [Receive Cycling Power Measurement Notifications from a Legacy CP Sensor] 76
4.4.44 CPP/COL/CPF/BV-37-I [Receive Cycling Power Measurement Notifications from a CP Sensor – Not For Use In A Distributed Power System]..78
4.4.45 CPP/COL/CPF/BV-38-I [Receive Cycling Power Measurement Notifications from a CP Sensor – Can Be Used In A Distributed Power System]...80
4.4.46 CPP/COL/CPF/BV-39-I [Receive Cycling Power Measurement Notifications from two CP Sensors – Can Be Used In A Distributed Power System – Total Instantaneous Power]...82
4.4.47 CPP/COL/CPF/BV-40-I [Receive Cycling Power Measurement Notifications from two CP Sensors – Can Be Used In A Distributed Power System – Pedal Power Balance]...83
4.4.48 CPP/COL/CPF/BV-41-I [Receive Cycling Power Measurement Notifications from two Legacy CP Sensors] 85
4.5 Service Procedures – Set Cumulative Value...87
4.5.1 CPP/COL/SPS/BV-01-I [Set Cumulative Value – Set to zero]...87
4.5.2 CPP/COL/SPS/BV-02-I [Set Cumulative Value - Set to non-zero]..87
4.6 Service Procedures – Handle CP Sensor Parameters...88
4.6.1 CPP/COL/SPP/BV-01-I [Update Sensor Location]..88
4.6.2 CPP/COL/SPP/BV-02-I [Request Supported Sensor Locations]..89
4.6.3 CPP/COL/SPP/BV-03-I [Set Crank Length]..89
4.6.4 CPP/COL/SPP/BV-04-I [Request Crank Length]..90
4.6.5 CPP/COL/SPP/BV-05-I [Set Chain Length]..91
4.6.6 CPP/COL/SPP/BV-06-I [Request Chain Length]..91
4.6.7 CPP/COL/SPP/BV-07-I [Set Chain Weight]..92
4.6.8 CPP/COL/SPP/BV-08-I [Request Chain Weight]..92
4.6.9 CPP/COL/SPP/BV-09-I [Set Span Length]..93
4.6.10 CPP/COL/SPP/BV-10-I [Request Span Length]..94
4.6.11 CPP/COL/SPP/BV-11-I [Request Factory Calibration Date]..94
4.6.12 CPP/COL/SPP/BV-12-I [Request Sampling Rate]...95
4.7 Service Procedure – Offset Compensation...95
4.7.1 CPP/COL/SPO/BV-01-I [Start Offset Compensation – Force Based CP Sensor].......................95
4.7.2 CPP/COL/SPO/BV-02-I [Start Offset Compensation – Torque Based CP Sensor]......................96
4.8 Service Procedure – Mask Characteristic Content..97
4.8.1 CPP/COL/SPM/BV-01-I [Mask Cycling Power Measurement Characteristic Content]...............97
4.9 Service Procedure – Enhanced Offset Compensation..97
4.9.1 CPP/COL/SPO/BV-03-I [Start Enhanced Offset Compensation – Force Based CP Sensor]........97
4.9.2 CPP/COL/SPO/BV-04-I [Start Enhanced Offset Compensation – Torque Based CP Sensor].......98
4.9.3 CPP/COL/SPO/BI-01-I [Start Enhanced Offset Compensation – Incorrect Calibration Position].....99
4.9.4 CPP/COL/SPO/BI-02-I [Start Enhanced Offset Compensation – Manufacturer Specific Error]......100
4.10 Service Procedures – General Error Handling..100
4.10.1 CPP/COL/SPE/BI-01-C [Unsupported Op Code]...101
4.10.2 CPP/COL/SPE/BI-02-C [Invalid Parameter]..101
4.10.3 CPP/COL/SPE/BI-03-C [Operation Failed] ... 102
4.10.4 CPP/COL/SPE/BI-04-C [Cycling Power Control Point Procedure Timeout] 102

5 Test Case Mapping ... 104
1 Scope

This Bluetooth document contains the Test Suite Structure (TSS) and Test Cases (TC) to test the Bluetooth Cycling Power Profile Specification.

The objective of this test specification is to provide a basis for interoperability tests for Bluetooth devices giving a high probability of air interface interoperability between different manufacturers' Bluetooth devices.
2 References, Definitions, and Abbreviations

2.1 References

This Bluetooth document incorporates, by dated or undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For the purpose of this Bluetooth document, the definitions, and abbreviations in [1], [2], and [3] apply.

[1] Test Strategy and Terminology Overview
[2] Bluetooth Core Specification v4.0 or later
[3] Cycling Power Profile Specification v1.0 or later
[4] Cycling Power Profile ICS, CPP.ICS
[6] Cycling Power Service Specification v1.0 or later
[8] Device Information Service Specification v1.1 or later
[9] Battery Service Specification v1.0 or later
[10] Cycling Power Profile Implementation Extra Information for Test, IXIT
[11] Characteristic and Descriptor descriptions are accessible via the Bluetooth SIG Assigned Numbers

2.2 Abbreviations

For the purpose of this Bluetooth document, the abbreviations in [1] and [2] apply.

CP Sensor refers to a Cycling Power Sensor.
3 Test Suite Structure (TSS)

3.1 Overview

The Cycling Power Profile requires the presence of GAP, SM, and GATT. This is illustrated in Figure 3.1.

3.2 Test Strategy

The test objectives are to verify the functionality of the Cycling Power Profile within a Bluetooth Host and enable interoperability between Bluetooth Hosts on different devices. The testing approach is to cover mandatory and optional requirements in the profile specification and to match these to the support of the IUT as described in the ICS Proforma.

Conformance testing is the appropriate test method to meet these intents. The basis for the test approach is the general concepts and conformance testing principles defined in ISO/ IEC 9646-1 and ISO/IEC 9646-2; both are part of the OSI Conformance Testing Methodology and Framework (CTMF).

The conformance test equipment shall provide an implementation of the Radio Controller and the parts of the Host needed to perform the test cases defined in the Cycling Power Profile Test Specification. For some test cases, it is necessary to stimulate the IUT from an Upper Tester. In practice, this could be implemented as a special test interface, an MMI, or another interface supported by the IUT.

Some test cases in this test specification emulates simultaneous connection with two Sensors and therefore require two Lower Testers that are independent of each other.

The Cycling Power Profile test suite contains Valid Behavior (BV) tests complemented with Invalid Behavior (BI) tests where required. The test coverage mirrored in the test suite structure is the result of a process that started with catalogued specification requirements that were logically grouped and assessed for testability enabling coverage in defined test purposes.

The test suite structure is a tree with the first level representing the protocol groups. This structure is shown in Section 3.3.
3.3 Test Groups

The following test groups have been defined.

Discovery of Services and Characteristics
- This group tests IUT discovery of the Cycling Power Service and characteristics and Device Information Service characteristics.

Features
- This group tests IUT implementation of Cycling Power Profile Features.

Service Procedures
- This group tests the operation of additional procedures defined in the service specification including the Cycling Power Control Point procedures.
4 Test Cases

4.1 Introduction

4.1.1 Test Case Identification Conventions

Test cases shall be assigned unique identifiers per the conventions in [1]. The convention used here is `<spec abbreviation>/<IUT role>/<class>/<feat>/<func>/<subfunc>/<cap>/<xx>-<nn>-<y>`. Bolded ID parts shall appear in the order prescribed. Non-bolded parts (if applicable) shall appear between the bolded parts. The order of the non-bolded parts may vary from test specification to test specification, but shall be consistent within each individual test specification.

<table>
<thead>
<tr>
<th>Identifier Abbreviation</th>
<th>Spec Identifier <spec abbreviation></th>
</tr>
</thead>
<tbody>
<tr>
<td>CPP</td>
<td>Cycling Power Profile</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identifier Abbreviation</th>
<th>Role Identifier <IUT role></th>
</tr>
</thead>
<tbody>
<tr>
<td>COL</td>
<td>Collector Role</td>
</tr>
<tr>
<td>SEN</td>
<td>CP Sensor Role and CP Broadcaster Role</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identifier Abbreviation</th>
<th>Class identifier <class></th>
</tr>
</thead>
<tbody>
<tr>
<td>CPD</td>
<td>Discovery of Services and Characteristics</td>
</tr>
<tr>
<td>CPF</td>
<td>Features</td>
</tr>
<tr>
<td>OBS</td>
<td>CP Observer Role</td>
</tr>
<tr>
<td>SPS</td>
<td>Service Procedures – Set Cumulative Value</td>
</tr>
<tr>
<td>SPP</td>
<td>Service Procedures – Handle CP Sensor Parameters</td>
</tr>
<tr>
<td>SPO</td>
<td>Service Procedure – Start Offset Compensation</td>
</tr>
<tr>
<td>SPM</td>
<td>Service Procedure – Mask Characteristic Content</td>
</tr>
<tr>
<td>SPE</td>
<td>Service Procedure – Error Handling</td>
</tr>
</tbody>
</table>

Table 4.1: CPP TC Class Naming Convention

4.1.2 Conformance

When conformance is claimed, all capabilities indicated as mandatory for this Specification shall be supported in the specified manner (process-mandatory). This also applies for all optional and conditional capabilities for which support is indicated. All mandatory capabilities and optional and conditional capabilities for which support is indicated are subject to verification as part of the Bluetooth certification program.

The Bluetooth Qualification Program may employ tests to verify implementation robustness. The level of implementation robustness that is verified varies from one Specification to another and may be revised for cause based on interoperability issues found in the market.

Such tests may verify
that claimed capabilities may be used in any order and any number of repetitions that are not
excluded by the Specification, OR

- that capability enabled by the implementations are sustained over durations expected by the use
case, OR

- that the implementation gracefully handles any quantity of data expected by the use case, OR

- that the implementation gracefully rejects any attempt to exercise capabilities which were declared
as not supported. Graceful rejection means that the implementation demonstrates uninterrupted
conformance to the specification immediately after rejecting such attempts without any need to be
externally reset or adjusted, OR

- that in cases where more than one valid interpretation of the Specification exists, the implementation
complies with at least one interpretation and gracefully handles other interpretations, OR

- that the implementation is immune to attempted security exploits.

A single execution of each of the required tests is required in order to constitute a pass verdict. However,
it is noted that in order to provide a foundation for interoperability, it is necessary that a qualified
implementation consistently and repeatedly passes any of the applicable tests.

In any case, where a member finds an issue with the Test Plan Generator, the test case as described in
the test specification, or with the test system utilized, the member is required to notify the responsible
party via an errata request such that the issue may be addressed.

4.1.3 Pass/Fail Verdict Conventions

Each test case has an Expected Outcome section, which outlines all the detailed pass criteria conditions
that shall be met by the IUT to merit a Pass Verdict.

The convention in this test specification is that, unless there is a specific set of fail conditions outlined in
the test case, then the IUT fails the test case as soon one of the pass criteria conditions cannot be met
and in case this occurs the outcome of the test shall be the Fail Verdict.

4.2 Setup Preambles

The procedures defined in this section are provided for information, as they are used by test equipment in
achieving the initial conditions in certain tests.

4.2.1 Set up LE Transport

Use GATT.TS [5] Preamble [Setup ATT Bearer over LE].

4.2.2 Set up BR/EDR Transport

4.2.3 Collector: Configure CP Sensor for use with Cycling Power Control Point

This preamble procedure specifies how the Collector IUT configures the CP Sensor for use with Cycling
Power Control Point and is valid for LE and BR/EDR transports.

- Establish an ATT Bearer connection between the Lower Tester and IUT as described in Section
 4.2.1 if using an LE transport or 4.2.2 if using a BR/EDR transport.

- The handles of the Cycling Power Measurement, the Cycling Power Feature, the Sensor Location,
 the Cycling Power Control Point, and the Cycling Power Vector characteristics have been previously
discovered by the Lower Tester during the test procedures in Section 4.3 or are known to the Lower Tester by other means.

- The handles of the Client Characteristic Configuration descriptor of the Cycling Power Measurement characteristic and Cycling Power Control Point characteristic have been previously discovered by the Lower Tester during the test procedure in Section 4.3 or are known to the Lower Tester by other means.

- The Lower Tester may perform a bonding procedure. If previously bonded, enable encryption if not already enabled.

- The Cycling Power Measurement characteristic is configured for notifications.

- The Cycling Power Control Point characteristic is configured for indications.

- The Cycling Power Vector characteristic, if discovered, is configured for notifications.

4.2.4 LE Collector: Scan to detect Sensor Connectable Advertisements and initiate a connection

This LE preamble procedure specifies how the Collector IUT scans for CP Sensor connectable advertisements for the case when a Sensor has new data available.

- Reference

 [3] 7.2

 [2] 9.3.3 and 9.3.4

- Preamble Procedure

 Configure the Collector IUT to accept commands from the Upper Tester to receive data from the CP Sensor (Lower Tester).

 The Upper Tester commands the Collector IUT to initiate a connection and the IUT starts scanning.

 The CP Sensor (Lower Tester) advertises to the Collector IUT either using:

 - ALT 1: GAP Directed Connectable Mode (send ADV_DIRECT_IND packets); or
 - ALT 2: GAP Undirected Connectable Mode (send ADV_IND packets).

 The Lower Tester waits for responses from the Collector IUT.

 The Collector IUT sends a CONNECT_REQ and an optionally empty PDU to the Lower Tester.
4.2.5 LE CP Observer: Scan to detect Sensor Non-Connectable Advertisements

This LE preamble procedure specifies how the CP Observer IUT scans for CP Sensor (Lower Tester) non-connectable advertisements for the case when a CP Sensor is broadcasting the Cycling Power Measurement characteristic value.

- Reference

 [3] 7

- Preamble Procedure

 Configure the CP Observer IUT to accept commands from the Upper Tester to receive data from the CP Sensor (Lower Tester).

 The Upper Tester commands the CP Observer IUT to scan with an appropriate filter policy (e.g. the address of the Lower Tester).

 The CP Sensor (Lower Tester) advertises using undirected non-connectable advertisement including the Cycling Power Measurement characteristic to be broadcasted as defined in [6].

4.2.6 BR/EDR Collector

4.2.6.1 Unbonded Devices

This BR/EDR preamble procedure specifies how the Collector IUT scans for the CP Sensor for the case when a CP Sensor has new records available.

- Reference

 [3] 7.3

 [2] 4.1 and 4.2
• Preamble Procedure
 Configure the Collector IUT to accept commands to receive data from the CP Sensor (Lower Tester).

Put the CP Sensor in General Discoverable mode.

The Upper Tester commands the Collector IUT to initiate a connection and the IUT starts scanning.

The CP Sensor (Lower Tester) exposes the SDP record for the Cycling Power Service.

The Collector IUT validates the SDP record and establishes a connection to the CP Sensor.

The Collector uses the GAP General Discovery procedure to discover a CP Sensor to establish a connection to a CP Sensor.

4.2.6.2 Bonded Devices
In the case of BR/EDR, either a CP Sensor or Collector could initiate a connection when they are bonded. The device initiating the connection becomes a master and is referred to herein as “master to be”, and the device accepting the connection becomes a slave and is referred to herein as “slave to be”.

This BR/EDR preamble procedure specifies how a “master to be” connects to “slave to be”.

• Reference
 [3] 7.3
 [2] 4.1 and 4.2

• Preamble Procedure
 Configure the Collector IUT to accept commands to receive data from the CP Sensor (Lower Tester).

Put the “slave to be” in the connectable mode to accept a connection from the “master to be”.

The connection is initiated by “master to be”.

The “slave to be” exposes the SDP record for the Cycling Power Service.

The “master to be” validates the SDP record and establishes a connection to the “slave to be”.

The “master to be” uses the GAP Link Establishment Procedure to connect to any bonded device.

4.3 Discover Services and Characteristics
The procedures defined in this test group verify IUT’s ability to discover the services and characteristics exposed by a CP Sensor (Lower Tester).

4.3.1 CPP/COL/CPD/BV-01-I [Discover Cycling Power Service over LE]
• Test Purpose
 Verify that the Cycling Power Service can be discovered by the Collector IUT when using an LE Transport

• Reference
 [3] 4.2
• **Initial Condition**

Establish an ATT Bearer connection between the Lower Tester and IUT and run the preamble procedure for the Collector to initiate a connection to a CP Sensor included in the Section 4.2.4.

The Lower Tester exposes one instantiation of the Cycling Power Service [6].

• **Test Procedure**

The Upper Tester issues a command to the IUT to discover primary services. There are two alternatives:

1. Execute the procedure included in GATT.TS [5] Discover All Primary Services, GATT/CL/GAD/BV-01-C, once, with the database specified in [6].

2. Execute the procedure included in GATT.TS [5] Discover Primary Services by Service UUID, GATT/CL/GAD/BV-02-C, with the service UUID set to «Cycling Power Service», with the database specified in [6].

• **Expected Outcome**

Pass verdict

The IUT performs, at least, one of the two alternatives to discover the primary services.

An attribute handle range is returned, containing the starting handle and the ending handle of the instantiation of a Cycling Power Service definition.

4.3.2 CPP/COL/CPD/BV-02-I [Discover Device Information Service over LE]

• **Test Purpose**

Verify that the Device Information Service can be discovered by the Collector IUT when using an LE Transport

• **Reference**

[3] 4.2

• **Initial Condition**

Run the preamble procedure to enable the Collector to initiate a connection to a CP Sensor included in Section 4.2.4.

The Lower Tester has one instantiation of the Device Information Service [8].

• **Test Procedure**

The Upper Tester issues a command to the IUT to discover primary services. There are two alternatives:

- Expected Outcome
 Pass verdict

An attribute handle range is returned, containing the starting handle and the ending handle of the instantiation of the Device Information Service definition.

4.3.3 CPP/COL/CPD/BV-03-I [Discover Battery Service over LE]

- Test Purpose
 Verify that the Battery Service can be discovered by the Collector IUT when using an LE Transport

- Reference
 [3] 4.2

- Initial Condition
 Run the preamble procedure to enable the Collector to initiate a connection to a CP Sensor included in Section 4.2.4.

 The Lower Tester has one instantiation of the Battery Service [9].

- Test Procedure
 The Upper Tester issues a command to the IUT to discover primary services. There are two alternatives:

- Expected Outcome
 Pass verdict

An attribute handle range is returned, containing the starting handle and the ending handle of the instantiation of the Battery Service definition.

4.3.4 CPP/COL/CPD/BV-04-I [SDP Service Discovery]

- Test Purpose
 Verify that the Collector IUT can discover the SDP record for the Cycling Power Service, Device Information Service (if supported) and Battery Service (if supported) of the Lower Tester when using the BR/EDR transpor

- Reference
 [3] 4.2
• Initial Condition
An ACL connection over BR/EDR is established between the Lower Tester and IUT.

• Test Procedure
1. The IUT establishes an SDP connection to the Lower Tester.
2. The IUT sends SDP requests to retrieve all attributes of all SDP records from the Lower Tester.

• Expected Outcome
Pass verdict
The SDP record for the Cycling Power Service is retrieved.
If supported, the SDP record for the Device Information Service is retrieved.
If supported, the SDP record for the Battery Service is retrieved.

4.3.5 CPP/SEN/CPD/BV-05-I [Cycling Power Service not discoverable over BR/EDR]

• Test Purpose
Verify that the Cycling Power Service on a BR/EDR/LE (i.e. dual mode) CP Sensor IUT that only supports the service over LE cannot be discovered by a Collector when using a BR/EDR based ATT Beare

• Reference
[3] 2.5

• Initial Condition
The IUT includes one instantiation of the Cycling Power Service [6].

• Test Procedure
1. Establish a BR/EDR ATT Bearer connection between the Lower Tester and IUT (4.2.2).
2. The Lower Tester sends an ATT_Find_By_Type_Value_Request (0x0001, 0xFFFF) to the IUT, with type set to «Primary Service» and Value set to «Cycling Power Service».
3. If no instances of Cycling Power Service as a primary service are found over BR/EDR, the Lower Tester sends an ATT_Find_By_Type_Value_Request (0x0001, 0xFFFF) to the IUT, with type set to «Secondary Service» and Value set to the UUID for «Cycling Power Service».

• Expected Outcome
Pass verdict
The Cycling Power Service is not discovered over BR/EDR.

4.3.6 CPP/COL/CPD/BV-06-I [Discover Cycling Power Feature Characteristic]

• Test Purpose
Verify that a Cycling Power Feature characteristic can be discovered by the Collector IUT

- Reference

 [3] 4.3.1

- Initial Condition

Establish an ATT Bearer connection between the Lower Tester and IUT and run the preamble procedure for the Collector to initiate a connection to a CP Sensor included in the Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.

The Lower Tester includes one instantiation of the Cycling Power Service [6] including all defined characteristics. This instantiation also contains two «future» characteristics:

- One inserted between the last mandatory characteristic and the first optional characteristic.
- One appended after the last optional characteristic.
- The «future» characteristic is a 16-bit UUID randomly selected from unassigned UUIDs at the time of the test.

The IUT has discovered the Cycling Power Service and has saved the handle range for an instantiation of the Cycling Power Service that contains an instantiation of the Cycling Power Feature characteristic. This was done by previously using GATT-based methods as in CPP/COL/CPD/BV-01-I [Discover Cycling Power Service over LE] for LE or using SDP as in CPP/COL/CPD/BV-04-I [SDP Service Discovery] for BR/EDR.

- Test Procedure

 1. The Upper Tester issues a command to the IUT to Discover Cycling Power Feature characteristic.

 2. The IUT executes either of the procedures included in GATT.TS [5]: Discover All Characteristics of a Service, GATT/CL/GAD/BV-04-C, with the specified handle range for the instantiation of the Cycling Power Service, or Discover Characteristic by UUID, GATT/CL/GAD/BV-05-C, with the specified handle range for the instantiation of the Cycling Power Service and UUID set to «Cycling Power Feature». In the selected procedure, only one pass is needed with the server database defined in Initial Condition.

- Expected Outcome

 Pass verdict

 One attribute handle/value pair is returned containing the UUID «Cycling Power Feature» characteristic.

4.3.7 CPP/COL/CPD/BV-07-I [Discover Cycling Power Measurement Characteristic]

- Test Purpose

 Verify that a Cycling Power Measurement characteristic can be discovered by the Collector IUT

- Reference

 [3] 3.1
• **Initial Condition**

Establish an ATT Bearer connection between the Lower Tester and IUT and run the preamble procedure for the Collector to initiate a connection to a CP Sensor included in the Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.

The Lower Tester includes one instantiation of the Cycling Power Service [6] including all defined characteristics. This instantiation also contains two «future» characteristics:

- One inserted between the last mandatory characteristic and the first optional characteristic.
- One appended after the last optional characteristic.
- The «future» characteristic is a 16-bit UUID randomly selected from unassigned UUIDs at the time of the test.

The IUT has discovered the Cycling Power Service and has saved the handle range for an instantiation of the Cycling Power Service. That instantiation contains an instantiation of the Cycling Power Measurement characteristic. This was done by previously using GATT-based methods as in CPP/-Col/CPD/BV-01-I [Discover Cycling Power Service over LE] for LE or using SDP as in CPP/Col/CPD/BV-04-I [SDP Service Discovery] for BR/EDR.

• **Test Procedure**

1. The Upper Tester issues a command to the IUT to Discover Cycling Power Measurement Characteristic.

2. The IUT executes either of the procedures included in GATT.TS [5]: Discover All Characteristics of a Service, GATT/CL/GAD/BV-04-C, with the specified handle range for the instantiation of the Cycling Power Service, or Discover Characteristic by UUID, GATT/CL/GAD/BV-05-C, with the specified handle range for the instantiation of the Cycling Power Service and UUID set to «Cycling Power Measurement». In the selected procedure, only one pass is needed with the server database defined in Initial Condition.

• **Expected Outcome**

Pass verdict

One attribute handle/value pair is returned containing the UUID «Cycling Power Measurement» characteristic with the appropriate property and handle.

4.3.8 CPP/Col/CPD/BV-08-I [Discover Cycling Power Measurement – Client Characteristic Configuration Descriptor]

• **Test Purpose**

Verify that the Collector IUT can discover the Client Characteristic Configuration descriptor of the Cycling Power Measurement characteristi

• **Reference**

[3] 4.3.1

• **Initial Condition**

Establish an ATT Bearer connection between the Lower Tester and IUT and run the preamble procedure for the Collector to initiate a connection to a CP Sensor included in the Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.
The Lower Tester includes one instantiation of the Cycling Power Service [6] in which the Cycling Power Measurement characteristic and an associated Client Characteristic Configuration descriptor are exposed.

The IUT has discovered the handle range of the Cycling Power Measurement.

• Test Procedure
 1. The Upper Tester issues a command to the IUT to Discover All Characteristic Descriptors using the handle range of the characteristic.
 2. The IUT executes one pass of the procedure included in GATT.TS [5]: Discover all Characteristic Descriptors, GATT/CL/GAD/BV-06-C, using the specified handle range, with the server database defined in Initial Condition.

• Expected Outcome
 Pass verdict

One attribute handle/value pair is returned containing the UUID «Client Characteristic Configuration» descriptor.

4.3.9 CPP/COL/CPD/BV-09-I [Discover Cycling Power Measurement – Server Characteristic Configuration Descriptor]

• Test Purpose
 Verify that the Collector IUT can discover the Server Characteristic Configuration descriptor of the Cycling Power Measurement characteristic.

• Reference
 [3] 4.3.1

• Initial Condition
 Establish an ATT Bearer connection between the Lower Tester and IUT and run the preamble procedure for the Collector to initiate a connection to a CP Sensor included in the Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.

The Lower Tester includes one instantiation of the Cycling Power Service [6] in which the Cycling Power Measurement characteristic and an associated Server Characteristic Configuration descriptor are exposed.

The IUT has discovered the handle range of the Cycling Power Measurement.

• Test Procedure
 1. The Upper Tester issues a command to the IUT to Discover All Characteristic Descriptors using the handle range of the characteristic.
 2. The IUT executes one pass of the procedure included in GATT.TS [5]: Discover all Characteristic Descriptors, GATT/CL/GAD/BV-06-C, using the specified handle range, with the server database defined in Initial Condition.

• Expected Outcome
 Pass verdict
One attribute handle/value pair is returned containing the UUID «Server Characteristic Configuration» descriptor.

4.3.10 CPP/COL/CPD/BV-10-I [Discover Sensor Location Characteristic]

- **Test Purpose**
 Verify that a Sensor Location characteristic can be discovered by the Collector IUT

- **Reference**
 [3] 4.3.1

- **Initial Condition**
 Establish an ATT Bearer connection between the Lower Tester and IUT and run the preamble procedure for the Collector to initiate a connection to a CP Sensor included in the Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.

 The Lower Tester includes one instantiation of the Cycling Power Service [6] including all defined characteristics. This instantiation also contains two «future» characteristics:
 - One inserted between the last mandatory characteristic and the first optional characteristic.
 - One appended after the last optional characteristic.
 - The «future» characteristic is a 16-bit UUID randomly selected from unassigned UUIDs at the time of the test.

 The IUT has discovered the Cycling Power Service and has saved the handle range for an instantiation of the Cycling Power Service that contains an instantiation of the Sensor Location characteristic. This was done by previously using GATT-based methods as in CPP/COL/CPD/BV-01-I [Discover Cycling Power Service over LE] for LE or using SDP as in CPP/COL/CPD/BV-04-I [SDP Service Discovery] for BR/EDR.

- **Test Procedure**
 1. The Upper Tester issues a command to the IUT to Discover Sensor Location Characteristic.
 2. The IUT executes either of the procedures included in GATT.TS [5]: Discover All Characteristics of a Service, GATT/CL/GAD/BV-04-C, with the specified handle range for the instantiation of the Cycling Power Service, or Discover Characteristic by UUID, GATT/CL/GAD/BV-05-C, with the specified handle range of the instantiation of the Cycling Power Service and UUID set to «Sensor Location». In the selected procedure, only one pass is needed with the server database defined in Initial Condition.

- **Expected Outcome**
 Pass verdict

 One attribute handle/value pair is returned containing the UUID «Sensor Location» characteristic.

4.3.11 CPP/COL/CPD/BV-11-I [Discover Cycling Power Control Point Characteristic]

- **Test Purpose**
 Verify that a Cycling Power Control Point characteristic can be discovered by the Collector IUT
• Reference

[3] 4.3.1

• Initial Condition

Establish an ATT Bearer connection between the Lower Tester and IUT and run the preamble procedure for the Collector to initiate a connection to a CP Sensor included in the Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.

The Lower Tester includes one instantiation of the Cycling Power Service [6] including all defined characteristics. This instantiation also contains two «future» characteristics:

- One inserted between the last mandatory characteristic and the first optional characteristic.
- One appended after the last optional characteristics.

The «future» characteristic is a 16-bit UUID randomly selected from unassigned UUIDs at the time of the test.

The IUT has discovered the Cycling Power Service and has saved the handle range for an instantiation of the Cycling Power Service that contains an instantiation of the Cycling Power Control Point characteristic. This was done by previously using GATT-based methods as in CPP/COL/CPD/BV-01-I [Discover Cycling Power Service over LE] for LE or using SDP as in CPP/COL/CPD/BV-04-I [SDP Service Discovery] for BR/EDR.

• Test Procedure

1. The Upper Tester issues a command to the IUT to Discover Cycling Power Control Point Characteristic.

2. The IUT executes either of the procedures included in GATT.TS [5]: Discover All Characteristics of a Service, GATT/CL/GAD/BV-04-C, with the handle range for the instantiation of the Cycling Power Service, or Discover Characteristic by UUID, GATT/CL/GAD/BV-05-C, with the handle range for the instantiation of the Cycling Power Service and UUID set to «Cycling Power Control Point characteristic». In the selected procedure, only one pass is needed with the server database defined in Initial Condition.

• Expected Outcome

Pass verdict

One attribute handle/value pair is returned containing the UUID «Cycling Power Control Point» characteristic.

4.3.12 CPP/COL/CPD/BV-12-I [Discover Cycling Power Control Point – Client Characteristic Configuration Descriptor]

• Test Purpose

Verify that the Collector IUT can discover the Client Characteristic Configuration descriptor of the Cycling Power Control Point characteristic.

• Reference

[3] 4.3.1
• Initial Condition

Establish an ATT Bearer connection between the Lower Tester and IUT and run the preamble procedure for the Collector to initiate a connection to a CP Sensor included in the Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.

The Lower Tester includes one instantiation of the Cycling Power Service [6] in which the Cycling Power Control Point characteristic and an associated Client Characteristic Configuration descriptor are exposed.

The IUT has discovered the handle range of the Cycling Power Control Point characteristic.

• Test Procedure

1. The Upper Tester issues a command to the IUT to Discover All Characteristic Descriptors using the handle range of the characteristic.

2. The IUT executes one pass of the procedure included in GATT.TS [5] Discover All Characteristic Descriptors, GATT/CL/GAD/BV-06-C, using the specified handle range, with the server database defined in Initial Condition.

• Expected Outcome

Pass verdict

One attribute handle/value pair is returned containing the UUID «Client Characteristic Configuration» descriptor.

4.3.13 CPP/COL/CPD/BV-13-I [Discover Cycling Power Vector Characteristic]

• Test Purpose

Verify that a Cycling Power Vector characteristic can be discovered by the Collector IUT

• Reference

[3] 4.3.1

• Initial Condition

Establish an ATT Bearer connection between the Lower Tester and IUT and run the preamble procedure for the Collector to initiate a connection to a CP Sensor included in the Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.

The Lower Tester includes one instantiation of the Cycling Power Service [6] including all defined characteristics. This instantiation also contains two «future» characteristics:

- One inserted between the last mandatory characteristic and the first optional characteristic.
- One appended after the last optional characteristics.

The «future» characteristic is a 16-bit UUID randomly selected from unassigned UUIDs at the time of the test.

The IUT has discovered the Cycling Power Service and has saved the handle range for an instantiation of the Cycling Power Service that contains an instantiation of the Cycling Power Vector characteristic. This was done by previously using GATT-based methods as in CPP/COL/CPD/BV-01-I
[Discover Cycling Power Service over LE] for LE or using SDP as in CPP/COL/CPD/BV-04-I [SDP Service Discovery] for BR/EDR.

- **Test Procedure**
 1. The Upper Tester issues a command to the IUT to Discover Cycling Power Vector Characteristic.
 2. The IUT executes either of the procedures included in GATT.TS [5]: Discover All Characteristics of a Service, GATT/CL/GAD//BV-04-C, with the handle range for the instantiation of the Cycling Power Service; or Discover Characteristic by UUID, GATT/CL/GAD//BV-05-C, with the handle range for the instantiation of the Cycling Power Service and UUID set to «Cycling Power Control Point characteristic». In the selected procedure, only one pass is needed with the server database defined in Initial Condition.

- **Expected Outcome**

 Pass verdict

 One attribute handle/value pair is returned containing the UUID «Cycling Power Vector» characteristic.

4.3.14 CPP/COL/CPD/BV-14-I [Discover Cycling Power Vector – Client Characteristic Configuration Descriptor]

- **Test Purpose**
 Verify that the Collector IUT can discover the Client Characteristic Configuration descriptor of the Cycling Power Vector characteristic

- **Reference**

 [3] 4.3.1

- **Initial Condition**

 Establish an ATT Bearer connection between the Lower Tester and IUT and run the preamble procedure for the Collector to initiate a connection to a CP Sensor included in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.

 The Lower Tester includes one instantiation of the Cycling Power Service [6] in which the Cycling Power Measurement characteristic and an associated Client Characteristic Configuration descriptor are exposed.

 The IUT has discovered the handle range of the Cycling Power Vector characteristic.

- **Test Procedure**

 1. The Upper Tester issues a command to the IUT to Discover All Characteristic Descriptors using the handle range of the characteristic.
 2. The IUT executes one pass of the procedure included in GATT.TS [5] Discover All Characteristic Descriptors, GATT/CL/GAD//BV-06-C, using the specified handle range, with the server database defined in Initial Condition.

- **Expected Outcome**

 Pass verdict
One attribute handle/value pair is returned containing the UUID «Client Characteristic Configuration» descriptor.

4.3.15 CPP/COL/CPD/BV-15-I [Discover Device Information Service Characteristics]

- **Test Purpose**
 Verify that a Collector IUT can discover all characteristics of a Device Information Service supported by the IU

- **Reference**
 [3] 4.3.2

- **Initial Condition**
 Via IXIT [10] the IUT manufacturer specifies all characteristics of the Device Information Service supported by the IUT.

Run the preamble procedure to enable the Collector to initiate a connection to a CP Sensor included in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.

The Lower Tester includes one instantiation of the Device Information Service including all defined characteristics. This instantiation also contains two «future» characteristics:

 - One inserted before the first characteristic defined in [8].
 - One appended after the last characteristic defined in [8].

The «future» characteristic is a 16-bit UUID randomly selected from unassigned UUIDs at the time of the test.

The IUT has the handle range for the instantiation of the Device Information Service contained in the Lower Tester. The Device Information Service contains one or more characteristics. DIS was previously discovered using GATT-based methods as in CPP/COL/CPD/BV-02-I [Discover Device Information Service over LE] for LE or using SDP as in CPP/COL/CPD/BV-04-I [SDP Service Discovery] for BR/EDR.

- **Test Procedure**
 The Upper Tester issues a command to the IUT to discover all characteristics of the Device Information Service supported by the IUT. There are two alternatives:

 2. The IUT executes the procedure included in GATT.TS [5] Discover Characteristics by UUID, GATT/CL/GAD//BV-05-C, several times, using each of the UUIDs for the characteristics of the Device Information Service supported by the IUT, with the Lower Tester instantiating the database specified in the Initial Condition.

- **Expected Outcome**
 Pass verdict
For each characteristic supported by the IUT contained in the Lower Tester’s instantiation of the Device Information Service, the IUT shall report an attribute handle/value pair for each characteristic specified in the IXIT [10] to the Upper Tester.

4.3.16 CPP/COL/CPD/BV-16-I [Read Device Information Service Characteristics]

- **Test Purpose**
 Verify that a Collector IUT can read all characteristics of a Device Information Service supported by the IUT.

- **Reference**
 [3] 4.3.2 and 4.9

- **Initial Condition**
 Via IXIT [10] the IUT manufacturer specifies all characteristics of the Device Information Service supported by the IUT.

Run the preamble procedure for the Collector to initiate a connection to a CP Sensor included in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.

The Lower Tester includes one instantiation of the Device Information Service [8] including all defined characteristics.

The IUT has previously executed the procedure included in CPP/COL/CPD/BV-15-I [Discover Device Information Service Characteristics], so it has the handle/value pairs for all characteristics of the Device Information Service supported by the IUT.

- **Test Procedure**
 1. For string based characteristics (i.e. Manufacturer Name String, Model Number String, Serial Number String, Hardware Revision String, Firmware Revision String and Software Revision String), this test shall be run twice and a disconnection may occur between the two tests. In the first pass, the string shall include only character values in the ASCII printable range (i.e. 0x20 – 0x7E). In the second pass, the string shall include character values outside the ASCII printable range. For System ID characteristic, the Manufacturer Identifier shall be set to 0xFFFE9ABCDE and Organizationally Unique Identifier shall be set to 0x123456. For 11073-20601 Regulatory Certification Data List characteristic, the Data field shall be set to 0x0000-0002-8008-0200-0001-0105-0008-0201-0012-0002. For PnP_ID characteristic, the Vendor ID Source shall be set to 0x01, the Vendor ID shall be set to 0x006B, the Product ID shall be set to 0x1234 and the Product Version shall be set to 0x0102.
 2. The Upper Tester issues a command to the IUT to read all characteristics of the Device Information Service supported by the IUT.
 3. For each characteristic of the Device Information Service supported by the IUT, the IUT shall execute the procedure included in GATT.TS [5] GATT/CL/GAR/BV-01-C [Read Characteristic Value – by the client].

- **Expected Outcome**
 Pass verdict
For each characteristic contained in the Lower Tester’s instantiation of the Device Information Service supported by the IUT, the IUT shall report the characteristic value for all characteristics specified in the IXIT [10] to the Upper Tester, including:

For string-based characteristics, any printable or non-printable ASCII values.

For System ID characteristic, the Manufacturer Identifier and Organizationally Unique Identifier.

For 11073-20601 Regulatory Certification Data List characteristic, the IEEE 11073-20601 Regulatory Certification Data List (note that this value is defined in big endian format).

For PnP_ID characteristic, the Vendor ID Source, the Vendor ID, the Product ID, and the Product Version.

4.3.17 CPP/COL/CPD/BV-17-I [Discover Battery Service Characteristics]

- **Test Purpose**
 Verify that a Collector IUT can discover all characteristics of a Battery Service supported by the IUT.

- **Reference**
 [3] 4.3.3

- **Initial Condition**
 Via IXIT [10] the IUT manufacturer specifies all characteristics of the Battery Service supported by the IUT.

Run the preamble procedure to enable the Collector to initiate a connection to a CP Sensor included in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.

The Lower Tester includes one instantiation of the Battery Service including all defined characteristics. This instantiation also contains two «future» characteristics:

- One inserted before the first characteristic defined in [8].
- One appended after the last characteristic defined in [8].

The «future» characteristic is a 16-bit UUID randomly selected from unassigned UUIDs at the time of the test.

The IUT has the handle range for the instantiation of the Battery Service contained in the Lower Tester. The Battery Service contains one or more characteristics. These were previously discovered using GATT-based methods as in CPP/COL/CPD/BV-03-I [Discover Battery Service over LE] for LE or using SDP as in CPP/COL/CPD/BV-04-I [SDP Service Discovery] for BR/EDR.

- **Test Procedure**
 1. The Upper Tester issues a command to the IUT to discover all characteristics of the Battery Service supported by the IUT. There are two alternatives:
3. The IUT executes the procedure included in GATT.TS [5] Discover Characteristics by UUID, GATT/CL/GAD/BV-05-C, several times, using each of the UUIDs for the characteristics of the Battery Service supported by the IUT, with the Lower Tester instantiating the database specified in the Initial Condition.

- Expected Outcome
 Pass verdict

For each characteristic supported by the IUT contained in the Lower Tester’s instantiation of the Battery Service, the IUT shall report an attribute handle/value pair for each characteristic specified in the IXIT [10] to the Upper Tester.

4.3.18 CPP/COL/CPD/BV-18-I [Read Battery Level Characteristic]

- **Test Purpose**
 Verify that the Collector IUT can read the Battery Level characteristic from a CP Sensor.

- **Reference**
 [3] 4.10

- **Initial Condition**
 A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport is used to setup the transport and L2CAP channel and initiate connection to a CP Sensor.

The Upper Tester knows the handle of a Battery Level characteristic contained in the Lower Tester.

- **Test Procedure**
 1. Send a command from Upper Tester to request IUT to read the Battery Level characteristic from the Lower Tester, e.g., `CPP_ReadRequest` (handle, value).
 2. After receipt of the expected result by the Lower Tester from the IUT, send an `ATT_Read_Response` (0x0B) from the Lower Tester to the IUT containing a defined value of the Battery Level characteristic.

```
<table>
<thead>
<tr>
<th>Lower Tester</th>
<th>IUT</th>
<th>Upper Tester</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2CAP</td>
<td></td>
<td>Connection Established over selected channel.</td>
</tr>
<tr>
<td>ATT_Read_Request</td>
<td>(Code = 0x0A, handle of Battery Level)</td>
<td></td>
</tr>
<tr>
<td>ATT_Read_Response</td>
<td>(Code = 0x0B, Battery Level value)</td>
<td></td>
</tr>
<tr>
<td>CPP_ReadReq</td>
<td>(handle of Battery Level)</td>
<td></td>
</tr>
<tr>
<td>CPP_ReadRes</td>
<td>(Battery Level value)</td>
<td></td>
</tr>
</tbody>
</table>
```

Figure 4.2: Read Battery Level Characteristic

- **Expected Outcome**
 Pass verdict
The IUT sends a correctly formatted `ATT_Read_Request` (0x0A) to the Lower Tester, containing the handle specified by the Upper Tester.

The IUT receives the response from the Lower Tester and sends the `CPP_ReadResponse` containing the correct Battery Level value to the Upper Tester.

4.4 Cycling Power Features

The procedures defined in this test group verify Cycling Power Sensor IUT implementation of the features defined in the Cycling Power Profile Specification [3] by a CP Sensor IUT and usage of the same features by a Collector IUT.

4.4.1 CPP/SEN/CPF/BV-01-I [Cycling Power Service UUID in AD]

- **Test Purpose**
 Verify that the Cycling Power Service UUID is included in AD (Advertising Data) from the CP Sensor IUT when using the LE Transport.

- **Reference**
 [3] 3.1.1.1

- **Initial Condition**
 The IUT is powered on in GAP Discoverable Mode.

 The IUT is induced to generate Advertising Packets using preamble defined in Section 4.2.3.

- **Test Procedure**
 The Lower Tester listens for Advertising Packets from the IUT.

- **Expected Outcome**
 Pass verdict

 At least, one received Advertising Packet contains the defined Service UUID for «Cycling Power Service».

4.4.2 CPP/SEN/CPF/BV-02-I [Local Name included in AD or Scan Response]

- **Test Purpose**
 Verify that the Local Name is included in AD (Advertising Data) or Scan Response data from the CP Sensor IUT when using the LE Transport.

- **Reference**
 [3] 3.1.1.2

- **Initial Condition**
 The IUT is powered on in GAP Discoverable Mode.

 The IUT is induced to generate Advertising Packets using the preamble in Section 4.2.3.

- **Test Procedure**
The Lower Tester listens for Advertising Packets from the IUT. When the Lower Tester receives an Advertising Packet from IUT, it sends a Scan Request to the IUT. Then the Lower Tester listens for a Scan Response from the IUT.

Figure 4.3: Local Name included in AD or Scan Response

- **Expected Outcome**
 - Pass verdict

 The IUT sends an Advertising packet and a Scan Response packet.

 The IUT includes the Local Name in either the Advertising packet or Scan Response packet, but not both.

4.4.3 CPP/SEN/CPF/BV-03-I [Appearance included in AD or Scan Response]

- **Test Purpose**

 Verify that the Appearance characteristic value is included in AD (Advertising Data) or Scan Response data from the CP Sensor IUT when using the LE Transport.

- **Reference**

 [3] 3.1.1.4

- **Initial Condition**

 The IUT is powered on in GAP Discoverable Mode.

 The IUT is induced to generate Advertising Packets using the preamble in Section 4.2.3.

- **Test Procedure**

 The Lower Tester listens for Advertising Packets from the IUT. When the Lower Tester receives an Advertising Packet from IUT, it sends a Scan Request to the IUT. Then the Lower Tester listens for a Scan Response from the IUT.
4.4.4 CPP/COL/CPF/BV-04-I [Read Cycling Power Feature characteristic]

- **Test Purpose**
 Verify that the Collector IUT can read the Cycling Power Feature characteristic from a CP Sensor.

- **Reference**
 [3] 4.4

- **Initial Condition**
 A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport is used to setup the transport and L2CAP channel and initiate connection to a CP Sensor.

 The Upper Tester knows the handle of a Cycling Power Feature characteristic contained in the Lower Tester.

- **Test Procedure**
 1. Send a command from Upper Tester to request IUT to read a Cycling Power Feature characteristic from the Lower Tester, e.g., `CPP_ReadRequest` (handle, value).
 2. After receipt of the expected result by the Lower Tester from the IUT, send an `ATT_Read_Response` (0x0B) from the Lower Tester to the IUT containing a defined value of the Cycling Power Feature characteristic.
Figure 4.5: Read Cycling Power Feature characteristic

- **Expected Outcome**

 Pass verdict

 The IUT sends a correctly formatted `ATT_Read_Request (0x0A)` to the Lower Tester, containing the handle specified by the Upper Tester.

 The IUT receives the response from the Lower Tester and sends the `CPP_ReadResponse` containing the correct Cycling Power Feature value to the Upper Tester.

4.4.5 **CPP/COL/CPF/BI-01-I [Read Cycling Power Feature characteristic with reserved value]**

- **Test Purpose**

 Verify that the Collector IUT can read the Cycling Power Feature characteristic from a CP Sensor, and ignore reserved bits.

- **Reference**

 [3] 4.4

- **Initial Condition**

 A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transports used to setup the transport and L2CAP channel and initiate connection to a CP Sensor.

 The Upper Tester knows the handle of a Cycling Power Feature characteristic contained in the Lower Tester.

- **Test Procedure**

 1. Send a command from Upper Tester to request the IUT to read a Cycling Power Feature Characteristic from the Lower Tester, e.g., `CPP_ReadRequest (handle, value)`.

 2. After receipt of the expected result by the Lower Tester from the IUT, send an `ATT_Read_Response (0x0B)` from the Lower Tester to the IUT containing values with some reserved bits set to 1.
4.4.6 CPP/COL/CPF/BV-05-I [Configure Cycling Power Measurement for Notification]

• Test Purpose
 Verify that the Collector IUT can configure a CP Sensor (Lower Tester) to notify Cycling Power Measurement characteristics.

• Reference
 [3] 4.5

• Initial Condition
 A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport is used to setup the transport and L2CAP channel and initiate connection to a CP Sensor.

 The IUT has discovered the Client Characteristic Configuration Descriptor for a Cycling Power Measurement characteristic contained in the Lower Tester.

• Test Procedure
 The Upper Tester sends a command to the IUT to configure the CP Sensor to send Cycling Power Measurement characteristics.
Figure 4.7: Configure Cycling Power Measurement for Notification

- Expected Outcome

 Pass verdict

IUT sends a correctly formatted `ATT_Write_Request` (0x12) to the Lower Tester, with the handle set to that of the Client Characteristic Configuration Descriptor for a Cycling Power Measurement characteristic, and the value set to «notification».

4.4.7 CPP/COL/CPF/BV-06-I [Receive Cycling Power Measurement Notifications]

- Test Purpose

 Verify that the Collector IUT can receive notifications of the Cycling Power Measurement Characteristic, including all variants.

- Reference

 [3] 4.5

- Initial Condition

 A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport is used to setup the transport and L2CAP channel and initiate connection to a CP Sensor.

The IUT has executed the procedure included in CPP/COL/CPF/BV-05-I [Configure Cycling Power Measurement for Notification], which configures it to expect Cycling Power Measurement Notifications.

The IUT knows the handle of the Cycling Power Measurement characteristic.

- Test Procedure

 1. The Lower Tester sends an `ATT_Handle_Value_Notification` containing a Cycling Power Measurement characteristic value to the IUT.
 2. The Lower Tester sends one Cycling Power Measurement characteristic notification for each Test Pattern shown in the following table. For each Test Pattern, the value of the Flags field is shown along with the corresponding pass criteria.
<table>
<thead>
<tr>
<th>Test Pattern</th>
<th>Flags Field Value (bit15 ... bit0)</th>
<th>Pass Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00000000 – 00000001</td>
<td>Only optional field present is Pedal Power Balance with the Pedal Power Balance Reference set to “Unknown”.</td>
</tr>
<tr>
<td>2</td>
<td>00000000 – 00000011</td>
<td>Only optional field present is Pedal Power Balance with the Pedal Power Balance Reference set to “Left”.</td>
</tr>
<tr>
<td>3</td>
<td>00000000 – 00000100</td>
<td>Only optional field present is Accumulated Torque with the Accumulated Torque Source set to “Wheel based”.</td>
</tr>
<tr>
<td>4</td>
<td>00000000 – 00001100</td>
<td>Only optional field present is Accumulated Torque with the Accumulated Torque Source set to “Crank based”.</td>
</tr>
<tr>
<td>5</td>
<td>00000000 – 00010000</td>
<td>Only optional fields present are Cumulative Wheel Revolutions and Last Wheel Event Time.</td>
</tr>
<tr>
<td>6</td>
<td>00000000 – 00100000</td>
<td>Only optional fields present are Cumulative Crank Revolutions and Last Crank Event Time.</td>
</tr>
<tr>
<td>7</td>
<td>00000000 – 01000000</td>
<td>Only optional fields present are Maximum Force Magnitude and Minimum Force Magnitude.</td>
</tr>
<tr>
<td>8</td>
<td>00000000 – 10000000</td>
<td>Only optional fields present are Maximum Torque Magnitude and Minimum Torque Magnitude.</td>
</tr>
<tr>
<td>9</td>
<td>00000001 – 00000000</td>
<td>Only optional fields present are Maximum Angle and Minimum Angle.</td>
</tr>
<tr>
<td>10</td>
<td>00000010 – 00000000</td>
<td>Only optional field present is Top Dead Spot.</td>
</tr>
<tr>
<td>11</td>
<td>00000100 – 00000000</td>
<td>Only optional field present is Bottom Dead Spot.</td>
</tr>
<tr>
<td>12</td>
<td>00001000 – 00000000</td>
<td>Only optional field present is Accumulated Energy.</td>
</tr>
<tr>
<td>13</td>
<td>00010000 – 00000000</td>
<td>No optional field present. Offset Compensation Indicator set to True.</td>
</tr>
</tbody>
</table>

Table 4.2: Receive Cycling Power Measurement Notifications
Expected Outcome

Pass verdict

IUT is able to correctly parse the received Cycling Power Measurement values according to the pass criteria in the table above. The reported Cycling Power Measurement field values match the ones sent by the Lower Tester.

4.4.8 CPP/COL/CPF/BV-07-I [Receive Cycling Power Measurement Notifications – Accumulated Torque Roll Over]

Test Purpose

Verify that the Collector IUT can receive notifications of the Cycling Power Measurement Characteristic and properly calculate accumulated torque when the value of the Accumulated Torque field rolls over.

Reference

[3] 4.5

Initial Condition

A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport is used to setup the transport and L2CAP channel and initiate connection to a CP Sensor.

The IUT has executed the procedure included in CPP/COL/CPF/BV-05-I [Configure Cycling Power Measurement for Notification], which configures it to expect Cycling Power Measurement Notifications.

The IUT knows the handle of the Cycling Power Measurement characteristic.

Test Procedure

1. Perform an action on the Lower Tester that will induce it to set the Accumulated Torque values in the table below such as to induce an Accumulated Torque rollover event.
Table 4.3: Receive Cycling Power Measurement Notifications – Accumulated Torque Rollover

<table>
<thead>
<tr>
<th>Accumulated Torque Value [1/32 Nm]</th>
<th>Expected Accumulated Torque at IUT [Nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 64960 (0xFDC0)</td>
<td>2030.0</td>
</tr>
<tr>
<td>2 65280 (0xFF00)</td>
<td>2040.0</td>
</tr>
<tr>
<td>3 64 (0x0040)</td>
<td>2050.0</td>
</tr>
<tr>
<td>4 384 (0x0180)</td>
<td>2060.0</td>
</tr>
<tr>
<td>5 704 (0x02C0)</td>
<td>2070.0</td>
</tr>
</tbody>
</table>

2. The Lower Tester sends five `ATT_Handle_Value_Notifications` containing a Cycling Power Measurement characteristic value to the IUT (corresponding to the sequence of rows in the table above) that simulate a regular and consistent torque accumulation as on a bike including an Accumulated Torque field rollover event.

3. The IUT responds correctly when the Accumulated Torque value rolls over.
 - Expected Outcome
 - Pass verdict

IUT receives notifications of Cycling Power Measurement values from the Lower Tester that include Accumulated Torque field.

IUT correctly calculates consistent accumulated torque values before and after the rollover event.

4.4.9 CPP/COL/CPF/BV-08-I [Receive Cycling Power Measurement Notifications – Last Wheel Event Time Roll Over]

- **Test Purpose**
 Verify that the Collector IUT can receive notifications of the Cycling Power Measurement Characteristic and properly calculate speed when the value of the Last Wheel Event Time field rolls over.

- **Reference**
 [3] 4.5

- **Initial Condition**
 A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport is used to setup the transport and L2CAP channel and initiate connection to a CP Sensor.

 The IUT has executed the procedure included in CPP/COL/CPF/BV-05-I [Configure Cycling Power Measurement for Notification], which configures it to expect Cycling Power Measurement Notifications.

 The IUT knows the handle of the Cycling Power Measurement characteristic.

- **Test Procedure**
1. Configure the IUT for Instantaneous Speed calculation with a wheel circumference of 210 centimeters. An IUT may be configured to an alternative value for calculation. Any alternative value shall be noted and included in testing evidence to support the calculated value of Instantaneous Speed.

2. Perform an action on the Lower Tester that will induce it to set the Cumulative Wheel Revolutions values and the Last Wheel Event Time values in the table below such as to induce a Last Wheel Event Time rollover event.

<table>
<thead>
<tr>
<th>Cumulative Wheel Revolution</th>
<th>Last Wheel Event Time [1/2048s]</th>
<th>Expected Instantaneous Speed at IUT [km/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>1008</td>
<td>60.48</td>
</tr>
<tr>
<td>3</td>
<td>1016</td>
<td>60.48</td>
</tr>
<tr>
<td>4</td>
<td>1024</td>
<td>60.48</td>
</tr>
<tr>
<td>5</td>
<td>1032</td>
<td>60.48</td>
</tr>
</tbody>
</table>

Table 4.4: Receive Cycling Power Measurement Notifications – Last Wheel Event Time Rollover

3. The Lower Tester sends five `ATT_Handle_Value_Notifications` containing a Cycling Power Measurement characteristic value to the IUT (corresponding to the sequence of rows in the table above) that simulate a regular and consistent wheel rotation as on a bike including a Last Wheel Event Time field rollover event.

4. The IUT responds correctly when the Last Wheel Event Time value rolls over.
 - Expected Outcome
 - Pass verdict

 IUT receives notifications of Cycling Power Measurement values from the Lower Tester that include Wheel Revolution Data.

 IUT correctly calculates consistent instantaneous speed values before and after the rollover event.

4.4.10 CPP/COL/CPF/BV-09-I [Receive Cycling Power Measurement Notifications – Cumulative Crank Revolutions Roll Over]

 - Test Purpose
 Verify that the Collector IUT can receive notifications of the Cycling Power Measurement Characteristic and properly calculate cadence when the value of the Cumulative Crank Revolutions field rolls over.

 - Reference
 [3] 4.5

 - Initial Condition
 A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport is used to setup the transport and L2CAP channel and initiate connection to a CP Sensor.
The IUT has executed the procedure included in CPP/COL/CPF/BV-05-I [Configure Cycling Power Measurement for Notification], which configures it to expect Cycling Power Measurement Notifications.

The IUT knows the handle of the Cycling Power Measurement characteristic.

- **Test Procedure**
 1. Perform an action on the Lower Tester that will induce it to set the Cumulative Crank Revolutions values and the Last Crank Event Time values in the table below such as to induce a Cumulative Crank Revolutions rollover event.

<table>
<thead>
<tr>
<th>Cumulative Crank Revolutions</th>
<th>Last Crank Event Time [1/1024s]</th>
<th>Expected Instantaneous Cadence [rpm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>65534</td>
<td>9300</td>
</tr>
<tr>
<td>2</td>
<td>65535</td>
<td>9982</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>11348</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>12030</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>13396</td>
</tr>
</tbody>
</table>

Table 4.5: Receive Cycling Power Measurement Notifications – Cumulative Crank Revolutions Roll Over

2. The Lower Tester sends five `ATT_Handle_Value_Notifications` containing a Cycling Power Measurement characteristic value to the IUT (corresponding to the sequence of rows in the table above) that simulate a regular and consistent crank rotation as on a bike including a Cumulative Crank Revolutions field rollover event.

3. The IUT responds correctly when the Cumulative Crank Revolutions value rolls over.

- **Expected Outcome**

 Pass verdict

 IUT receives notifications of Cycling Power Measurement values from the Lower Tester that include Crank Revolution Data.

 IUT correctly calculates consistent instantaneous cadence values before and after the rollover event.

4.4.11 CPP/COL/CPF/BV-10-I [Receive Cycling Power Measurement Notifications – Last Crank Event Time Roll Over]

- **Test Purpose**

 Verify that the Collector IUT can receive notifications of the Cycling Power Measurement Characteristic and properly calculate cadence when the value of the Last Crank Event Time field rolls over.

- **Reference**

 [3] 4.5

- **Initial Condition**

 A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport is used to setup the transport and L2CAP channel and initiate connection to a CP Sensor.
The IUT has executed the procedure included in CPP/COL/CPF/BV-05-I [Configure Cycling Power Measurement for Notification], which configures it to expect Cycling Power Measurement Notifications.

The IUT knows the handle of the Cycling Power Measurement characteristic.

• Test Procedure

1. Perform an action on the Lower Tester that will induce it to set the Cumulative Crank Revolutions values and the Last Crank Event Time values in the table below such as to induce a Last Crank Event Time rollover event.

<table>
<thead>
<tr>
<th>Cumulative Crank Revolutions</th>
<th>Last Crank Event Time [1/1024s]</th>
<th>Expected Instantaneous Cadence [rpm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>64682</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>512</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>1194</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>2560</td>
<td>90</td>
</tr>
</tbody>
</table>

Table 4.6: Receive Cycling Power Measurement Notifications – Last Crank Event Time Rollover

2. The Lower Tester sends five ATT_Handle_Value_Notifications containing a Cycling Power Measurement characteristic value to the IUT (corresponding to the sequence of rows in the table above) that simulate a regular and consistent crank rotation as on a bike including a Last Crank Event Time field rollover event.

3. The IUT responds correctly when the Last Crank Event Time value rolls over.

• Expected Outcome

Pass verdict

IUT receives notifications of Cycling Power Measurement values from the Lower Tester that include Crank Revolution Data.

IUT correctly calculates consistent instantaneous cadence values before and after the rollover event.

4.4.12 CPP/COL/CPF/BV-11-I [Receive Cycling Power Measurement Notifications – Accumulated Energy Roll Over]

• Test Purpose

Verify that the Collector IUT can receive notifications of the Cycling Power Measurement Characteristic and properly calculate accumulated energy when the value of the Accumulated Energy field rolls over.

• Reference

[3] 4.5

• Initial Condition

A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport is used to setup the transport and L2CAP channel and initiate connection to a CP Sensor.
The IUT has executed the procedure included in CPP/COL/CPF/BV-05-I [Configure Cycling Power Measurement for Notification], which configures it to expect Cycling Power Measurement Notifications.

The IUT knows the handle of the Cycling Power Measurement characteristic.

Test Procedure

1. Perform an action on the Lower Tester that will induce it to set the Accumulated Energy values in the table below such as to induce an Accumulated Energy rollover event.

<table>
<thead>
<tr>
<th>Accumulated Energy Value [kJ]</th>
<th>Expected Accumulated Energy at IUT [kJ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 65532</td>
<td>65532</td>
</tr>
<tr>
<td>2 65534</td>
<td>65534</td>
</tr>
<tr>
<td>3 0</td>
<td>65536</td>
</tr>
<tr>
<td>4 2</td>
<td>65538</td>
</tr>
<tr>
<td>5 4</td>
<td>65540</td>
</tr>
</tbody>
</table>

Table 4.7: Receive Cycling Power Measurement Notifications – Accumulated Energy Rollover

2. The Lower Tester sends five `ATT_Handle_Value_Notifications` containing a Cycling Power Measurement characteristic value to the IUT (corresponding to the sequence of rows in the table above) that simulate a regular and consistent energy accumulation as on a bike including an Accumulated Energy field rollover event.

3. The IUT responds correctly when the Accumulated Energy value rolls over.

Expected Outcome

Pass verdict

IUT receives notifications of Cycling Power Measurement values from the Lower Tester that include Accumulated Energy field.

IUT correctly calculates consistent accumulated energy values before and after the rollover event.

4.4.13 CPP/COL/CPF/BV-12-I [Receive Cycling Power Measurement Notifications – Wheel Revolution Data After Link Loss]

Test Purpose

Verify that the Collector IUT can receive notifications of the Cycling Power Measurement Characteristic that contain Wheel Revolution Data and that it properly recovers following a link loss.

Reference

[3] 4.5

Initial Condition

A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport is used to setup the transport and L2CAP channel and initiate connection to a CP Sensor.
The IUT has executed the procedure included in CPP/COL/CPF/BV-05-I [Configure Cycling Power Measurement for Notification], which configures it to expect Cycling Power Measurement Notifications.

The IUT knows the handle of the Cycling Power Measurement characteristic.

- **Test Procedure**

1. Configure the IUT for Instantaneous Speed calculation with a wheel circumference of 210 centimeters. An IUT may be configured to an alternative value for calculation. Any alternative value shall be noted and included in testing evidence to support the calculated value of Instantaneous Speed.

2. Perform an action on the Lower Tester that will induce it to set the Cumulative Wheel Revolutions values and the Last Wheel Event Time values in the following table.

<table>
<thead>
<tr>
<th>Cumulative Wheel Revolution</th>
<th>Last Wheel Event Time [1/2048s]</th>
<th>Expected Instantaneous Speed at IUT [km/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000</td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>1008</td>
<td>3248</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60.48</td>
</tr>
<tr>
<td>Link Loss and Reconnection (simulated for 10 seconds)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1088</td>
<td>23728</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60.48</td>
</tr>
<tr>
<td>4</td>
<td>1096</td>
<td>25776</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60.48</td>
</tr>
<tr>
<td>5</td>
<td>1104</td>
<td>27824</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60.48</td>
</tr>
</tbody>
</table>

 Table 4.8: Receive Cycling Power Measurement Notifications – Wheel Revolution Data After Link Loss

3. The Lower Tester sends two `ATT_Handle_Value_Notifications` containing a Cycling Power Measurement characteristic value to the IUT (corresponding to the sequence of rows 1 and 2 in the table above) that simulate a regular and consistent wheel rotation as on a bike for several seconds.

4. Perform an action on the Lower Tester that will cause the link to be lost for several seconds while continuing to simulate wheel rotation for several seconds at the IUT.

5. Perform an action on the Lower Tester that allows the link to be restored.

6. The Lower Tester sends the three remaining `ATT_Handle_Value_Notifications` containing a Cycling Power Measurement characteristic value to the IUT (corresponding to the sequence of rows 3, 4 and 5 in the table above) that simulate a regular and consistent wheel rotation as on a bike for several seconds.

7. The IUT responds correctly during the link loss and after the link is restored.

- **Expected Outcome**

 Pass verdict

 IUT receives notifications of Cycling Power Measurement values from the Lower Tester that include Wheel Revolution Data.

 IUT correctly calculates consistent instantaneous speed values despite the link loss.
4.4.14 CPP/COL/CPF/BV-13-I [Receive Cycling Power Measurement Notifications – Crank Revolution Data After Link Loss]

- **Test Purpose**

 Verify that the Collector IUT can receive notifications of the Cycling Power Measurement Characteristic that contain Crank Revolution Data and that it properly recovers following a link loss.

- **Reference**

 [3] 4.5

- **Initial Condition**

 A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport is used to setup the transport and L2CAP channel and initiate connection to a CP Sensor.

 The IUT has executed the procedure included in CPP/COL/CPF/BV-05-I [Configure Cycling Power Measurement for Notification], which configures it to expect Cycling Power Measurement Notifications.

 The IUT knows the handle of the Cycling Power Measurement characteristic.

- **Test Procedure**

 1. Perform an action on the Lower Tester that will induce it to set the Cumulative Crank Revolutions values and the Last Crank Event Time values in the following table.

Cumulative Crank Revolutions	Last Crank Event Time [1/1024s]	Expected Instantaneous Cadence [rpm]
1	1000	10000
2	1001	10682
Link Loss and Reconnection (simulated for 10 seconds)		
3	1016	20922
 | 4 | 1018 | 22288 |
 | 5 | 1019 | 22970 |

 Table 4.9: Receive Cycling Power Measurement Notifications – Crank Revolution Data After Link Loss

 2. The Lower Tester sends two `ATT_Handle_Value_Notifications` containing a Cycling Power Measurement characteristic value to the IUT (corresponding to the sequence of rows 1 and 2 in the table above) that simulate a regular and consistent crank rotation as on a bike for several seconds.

 3. Perform an action on the Lower Tester that will cause the link to be lost for several seconds while continuing to simulate crank rotation for several seconds at the IUT.

 4. Perform an action on the Lower Tester that allows the link to be restored.

 5. The Lower Tester sends the three remaining `ATT_Handle_Value_Notifications` containing a Cycling Power Measurement characteristic value to the IUT (corresponding to the sequence of
rows 3, 4 and 5 in the table above) that simulate a regular and consistent crank rotation as on a bike for several seconds.

6. The IUT responds correctly during the link loss and after the link is restored.

- **Expected Outcome**

 Pass verdict

 IUT receives notifications of Cycling Power Measurement values from the Lower Tester that include Crank Revolution Data.

 IUT correctly calculates consistent instantaneous cadence values despite the link loss.

4.4.15 CPP/COL/CPF/BV-14-I [Receive Cycling Power Measurement Notifications – Reverse Wheel Revolution]

- **Test Purpose**

 Verify that the Collector IUT is tolerant of CP Sensors that have the capability to decrement the Cumulative Wheel Revolutions field (e.g. when the wheel rotates in reverse).

- **Reference**

 [3] 4.5

- **Initial Condition**

 A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport is used to setup the transport and L2CAP channel and initiate connection to a CP Sensor.

 The IUT has executed the procedure included in CPP/COL/CPF/BV-05-I [Configure Cycling Power Measurement for Notification], which configures it to expect Cycling Power Measurement Notifications.

 The IUT knows the handle of the Cycling Power Measurement characteristic.

- **Test Procedure**

 1. Configure the IUT for Instantaneous Speed calculation with a wheel circumference of 210 centimeters. An IUT may be configured to an alternative value for calculation. Any alternative value shall be noted and included in testing evidence to support the calculated value of Instantaneous Speed.

 2. Perform an action on the Lower Tester that will induce it to set the Cumulative Wheel Revolutions values and the Last Wheel Event Time values in the following table.

<table>
<thead>
<tr>
<th>Cumulative Wheel Revolution</th>
<th>Last Wheel Event Time [1/2048s]</th>
<th>Expected Instantaneous Speed at IUT [km/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1010</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>1012</td>
<td>15.12</td>
</tr>
<tr>
<td>3</td>
<td>1008</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>1006</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Table 4.10: Receive Cycling Power Measurement Notifications – Reverse Wheel Revolution

<table>
<thead>
<tr>
<th>Cumulative Wheel Revolution</th>
<th>Last Wheel Event Time [1/2048s]</th>
<th>Expected Instantaneous Speed at IUT [km/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1007</td>
<td>8704</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.56</td>
</tr>
<tr>
<td>6</td>
<td>1009</td>
<td>10752</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.12</td>
</tr>
<tr>
<td>7</td>
<td>1011</td>
<td>12800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.12</td>
</tr>
</tbody>
</table>

3. The Lower Tester sends six `ATT_Handle_Value_Notifications` containing a Cycling Power Measurement characteristic value to the IUT (corresponding to the sequence of rows in the table above) that simulate an initial consistent forward rotation, followed by consistent reverse wheel rotation followed by consistent forward wheel rotation as on a bike.

4. The IUT responds correctly when the Cumulative Wheel Revolutions value initially increases.

- Expected Outcome
 - Pass verdict

 IUT receives notifications of Cycling Power Measurement values from the Lower Tester that include Wheel Revolution Data.

 IUT correctly calculates consistent instantaneous speed values when the wheel rotates forward both before and after the Cumulative Wheel Revolutions value decreases.

 Note that the behavior of the IUT while the wheel rotates in reverse corresponding to rows 3 and 4 is left to the implementation (e.g. the implementation may or may not calculate and display reverse speed during that time.).

4.4.16 CPP/COL/CPF/BV-15-I [Receive Cycling Power Measurement Notifications – Accumulated Torque Value Decreases]

- **Test Purpose**
 Verify that the Collector IUT is tolerant of CP Sensors that have the capability to decrement the Accumulated Torque field (e.g. when the user pulls the pedals).

- **Reference**
 [3] 4.5

- **Initial Condition**
 A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport is used to setup the transport and L2CAP channel and initiate connection to a CP Sensor.

 The IUT has executed the procedure included in CPP/COL/CPF/BV-05-I [Configure Cycling Power Measurement for Notification], which configures it to expect Cycling Power Measurement Notifications.

 The IUT knows the handle of the Cycling Power Measurement characteristic.

- **Test Procedure**
1. Perform an action on the Lower Tester that will induce it to set the Accumulated Torque values in the following table such as to induce an Accumulated Torque rollover event (when the value decreases).

<table>
<thead>
<tr>
<th>Accumulated Torque Value [1/32 Nm]</th>
<th>Expected Accumulated Torque at IUT [Nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 64960 (0xFDC0)</td>
<td>2030.0</td>
</tr>
<tr>
<td>2 65280 (0xFF00)</td>
<td>2040.0</td>
</tr>
<tr>
<td>3 64 (0x0040)</td>
<td>2050.0</td>
</tr>
<tr>
<td>4 384 (0x0180)</td>
<td>2060.0</td>
</tr>
<tr>
<td>5 704 (0x02C0)</td>
<td>2070.0</td>
</tr>
<tr>
<td>6 384 (0x0180)</td>
<td>2060.0</td>
</tr>
<tr>
<td>7 64 (0x0040)</td>
<td>2050.0</td>
</tr>
<tr>
<td>8 65280 (0xFF00)</td>
<td>2040.0</td>
</tr>
<tr>
<td>9 64960 (0xFDC0)</td>
<td>2030.0</td>
</tr>
</tbody>
</table>

Table 4.11: Receive Cycling Power Measurement Notifications – Accumulated Torque Value Decreases

2. The Lower Tester sends two `ATT_Handle_Value_Notifications` containing a Cycling Power Measurement characteristic value to the IUT (corresponding to the sequence of rows the table above) that simulate a regular and consistent torque accumulation as on a bike for several seconds including two Accumulated Torque field rollover events.

3. The IUT responds correctly when the Accumulated Torque value rolls over.

 • Expected Outcome

 Pass verdict

IUT receives notifications of Cycling Power Measurement values from the Lower Tester that include Accumulated Torque field.

 IUT correctly calculates consistent accumulated torque values before and after the rollover event.

4.4.17 CPP/COL/CPF/BI-02-I [Receive Cycling Power Measurement Notifications with reserved flags]

 • Test Purpose

 Verify that the Collector IUT can receive notifications of the Cycling Power Measurement Characteristic from a CP Sensor including reserved flags.

 • Reference

 [3] 4.5

 • Initial Condition
A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport is used to setup the transport and L2CAP channel and initiate connection to a CP Sensor.

The IUT has executed the procedure included in CPP/COL/CPF/BV-05-I [Configure Cycling Power Measurement for Notification], which configures it to expect Cycling Power Measurement Notifications.

The IUT knows the handle of the Cycling Power Measurement characteristic.

- **Test Procedure**

 The Lower Tester sends an `ATT_Handle_Value_Notification` containing a Cycling Power Measurement characteristic value to the IUT. There are many combinations of reserved flag settings. For this test use Flags = 0xE000. This includes reserved bits 15, 14, and 13 = 111. Optional fields are not present in the Cycling Power Measurement characteristic, so other bits of the Flags field are set to 0 as well as the Offset Compensation Indicator.

- **Expected Outcome**

 Pass verdict

 IUT reports the received Cycling Power Measurement value to the Upper Tester. The reported Cycling Power Measurement value matches the one sent by the Lower Tester, including the reserved bits of the Flags field.

4.4.18 CPP/COL/CPF/BI-03-I [Receive Cycling Power Measurement Notifications with additional octets not represented in the flags field]

- **Test Purpose**

 Verify that the Collector IUT can receive notifications of the Cycling Power Measurement Characteristic from a CP Sensor including additional octets not represented in the flags field.

- **Reference**

 [3] 4.5
• Initial Condition

A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport is used to setup the transport and L2CAP channel and initiate connection to a CP Sensor.

The IUT has executed the procedure included in CPP/COL/CPF/BV-05-I [Configure Cycling Power Measurement for Notification], which configures it to expect Cycling Power Measurement Notifications.

The IUT knows the handle of the Cycling Power Measurement characteristic.

• Test Procedure

The Lower Tester sends an ATT_Handle_Value_Notification containing a Cycling Power Measurement characteristic value to the IUT. That value shall contain: Flags = 0x0000 and Instantaneous Power. The optional fields are not present, and, at least, two additional octets not represented in the flags field are present. The total number of octets shall not exceed the maximum MTU size.

Figure 4.10: Receive Cycling Power Measurement Notifications with additional octets not represented in the flags field

• Expected Outcome

Pass verdict

IUT reports the received Cycling Power Measurement value to the Upper Tester with no additional octets. The reported Cycling Power Measurement value matches the one sent by the Lower Tester.

4.4.19 CPP/COL/CPF/BV-16-I [Receive Cycling Power Measurement Notifications from a Distributed Power System]

• Test Purpose

Verify that the collector IUT can receive multiple Cycling Power Measurement notifications from a distributed power system (e.g. 2 CP Sensors).

• Reference
4.5 and 4.3.3

• Initial Condition

A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport is used to setup the transport and L2CAP channel and initiate connection to a CP Sensor. This preamble is repeated to initiate a connection to both CP Sensors (Lower Tester) involved in this test case. The first Lower Tester is configured with a Sensor Location set to “Left Pedal” (0x07) and the second Lower Tester is configured with a Sensor Location set to “Right Pedal” (0x08).

The IUT has executed the procedure included in CPP/COL/CPF/BV-05-I [Configure Cycling Power Measurement for Notification], which configures it to expect Cycling Power Measurement Notifications for both CP Sensors.

The IUT knows the handle of the Cycling Power Measurement characteristic of both CP Sensors.

• Test Procedure

1. The Lower Testers send two or more ATT_Handle_Value_Notifications to the IUT; each contains the Cycling Power Measurement characteristic value with at least the mandatory fields (the Flags field and the Instantaneous Power).

2. The IUT displays the values of the Instantaneous Power for each CP Sensor and decodes properly the other optional fields, if present.

• Expected Outcome

Pass verdict

For each ATT_Handle_Value_Notification sent to the IUT:

- The IUT reports the received Cycling Power Measurement values to the Upper Tester.
- The reported Cycling Power Measurement values match that sent by the Lower Tester.

4.4.20 CPP/COL/CPF/BV-17-I [Receive Cycling Power Measurement Notifications from a Distributed Power System – Calculates Total Instantaneous Power]

• Test Purpose

Verify that the collector IUT can receive multiple Cycling Power Measurement notifications from a distributed power system (e.g. 2 CP Sensors) and calculates the total instantaneous power based on each instantaneous power component.

• Reference

[3] 4.5

• Initial Condition

A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport is used to setup the transport and L2CAP channel and initiate connection to a CP Sensor. This preamble is repeated to initiate a connection to both CP Sensors (Lower Tester) involved in this test case. The first Lower Tester is configured with a Sensor Location set to “Left Pedal” (0x07) and the second Lower Tester is configured with a Sensor Location set to “Right Pedal” (0x08).
The IUT has executed the procedure included in CPP/COL/CPF/BV-05-I [Configure Cycling Power Measurement for Notification], which configures it to expect Cycling Power Measurement Notifications for both CP Sensors.

The IUT knows the handle of the Cycling Power Measurement characteristic of both CP Sensors.

- **Test Procedure**
 1. Perform an action on the Lower Tester that will induce it to set the Instantaneous Power values in the table below.

<table>
<thead>
<tr>
<th>Instantaneous Power [W]</th>
<th>Expected Total Instantaneous Power [W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Tester 1 (Left Pedal)</td>
<td>Lower Tester 2 (Right Pedal)</td>
</tr>
<tr>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>180</td>
</tr>
<tr>
<td>4</td>
<td>180</td>
</tr>
</tbody>
</table>

Table 4.12: Receive Cycling Power Measurement Notifications from a Distributed Power System – Calculates Total Instantaneous Power

2. The Lower Testers send three *ATT_Handle_Value_Notifications* containing a Cycling Power Measurement characteristic value to the IUT (corresponding to the sequence of rows in the table above) that simulate a regular and consistent power measurement as on a bike.

3. The IUT displays the value of the total instantaneous power value calculated by summing both values coming from the two different Lower Testers.

- **Expected Outcome**
 - **Pass verdict**

IUT receives notifications of Cycling Power Measurement values from the Lower Testers that include the Flags field and, at least, the Instantaneous Power field.

IUT correctly calculates consistent total instantaneous power.

4.4.21 CPP/COL/CPF/BV-18-I [Receive Cycling Power Measurement Notifications from a Distributed Power System – Calculates Pedal Power Balance]

- **Test Purpose**
 Verify that the collector IUT can receive multiple Cycling Power Measurement notifications from a distributed power system (e.g. 2 CP Sensors) and calculates the total instantaneous power based on each instantaneous power component.

- **Reference**
 [3] 4.5
• Initial Condition

A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport is used to setup the transport and L2CAP channel and initiate connection to a CP Sensor. This preamble is repeated to initiate a connection to both CP Sensors (Lower Tester) involved in this test case. The first Lower Tester is configured with a Sensor Location set to “Left Pedal” (0x07) and the second Lower Tester is configured with a Sensor Location set to “Right Pedal” (0x08).

The IUT has executed the procedure included in CPP/COL/CPF/BV-05-I [Configure Cycling Power Measurement for Notification], which configures it to expect Cycling Power Measurement Notifications for both CP Sensors.

The IUT knows the handle of the Cycling Power Measurement characteristic of both CP Sensors.

• Test Procedure

1. Perform an action on the Lower Tester that will induce it to set the Instantaneous Power values in the table below.

<table>
<thead>
<tr>
<th>Instantaneous Power [W]</th>
<th>Expected Pedal Power Balance [%] (Left Pedal as the reference)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Tester 1 (Left Pedal)</td>
<td>Lower Tester 2 (Right Pedal)</td>
</tr>
<tr>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>180</td>
</tr>
<tr>
<td>4</td>
<td>180</td>
</tr>
</tbody>
</table>

Table 4.13: Receive Cycling Power Measurement Notifications from a Distributed Power System – Calculates Pedal Power Balance

2. The Lower Testers send three ATT_Handle_Value_Notifications containing a Cycling Power Measurement characteristic value to the IUT (corresponding to the sequence of rows in the table above) that simulate a regular and consistent power measurement as on a bike.

3. The IUT displays the value of the pedal power balance value calculated with the values coming from the two different Lower Testers.

• Expected Outcome

Pass verdict

IUT receives notifications of Cycling Power Measurement values from the Lower Testers that include the Flags field and, at least, the Instantaneous Power field.

IUT correctly calculates consistent pedal power balance.

4.4.22 CPP/COL/CPF/BV-19-I [Read Sensor Location characteristic]

• Test Purpose

Verify that the Collector IUT can read the Sensor Location characteristic from a CP Sensor.
• Reference

[3] 4.6

• Initial Condition

A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport is used to setup the transport and L2CAP channel and initiate connection to a CP Sensor.

The Upper Tester knows the handle of a Sensor Location characteristic contained in the Lower Tester.

• Test Procedure

1. Send a command from Upper Tester to request IUT to read a Sensor Location characteristic from the Lower Tester, e.g., \textit{CPP_ReadRequest} (handle, value).

2. After receipt of the expected result by the Lower Tester from the IUT, send an \textit{ATT_Read_Response} (0x0B) from the Lower Tester to the IUT containing a defined value of the Sensor Location characteristic.

Figure 4.11: Read Sensor Location characteristic

• Expected Outcome

Pass verdict

The IUT sends a correctly formatted \textit{ATT_Read_Request} (0x0A) to the Lower Tester, containing the handle specified by the Upper Tester.

The IUT receives the response from the Lower Tester and sends the \textit{CPP_ReadResponse} containing the correct Sensor Location value to the Upper Tester.

4.4.23 CPP/COL/CPF/BI-04-I [Read Sensor Location characteristic with reserved value]

• Test Purpose

Verify that the Collector IUT can read the Sensor Location characteristic from a CP Sensor, and discard a reserved value or change it to ‘Other’.

• Reference

[3] 4.6
• Initial Condition

A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport is used to setup the transport and L2CAP channel and initiate connection to a CP Sensor.

The Upper Tester knows the handle of a Sensor Location characteristic contained in the Lower Tester.

• Test Procedure

1. Send a command from Upper Tester to request IUT to read a Sensor Location Characteristic from the Lower Tester, e.g., `CPP_ReadRequest` (handle, value).

2. After receipt of the expected result by the Lower Tester from the IUT, send an `ATT_Read_Response` (0x0B) from the Lower Tester to the IUT containing a reserved value.

 ![Diagram](image)

 Figure 4.12: Read Sensor Location characteristic with reserved value

• Expected Outcome

 Pass verdict

 The IUT sends a correctly formatted `ATT_Read_Request` (0x0A) to the Lower Tester, containing the handle specified by the Upper Tester.

 The IUT receives the response from the Lower Tester and discards it or changes it to ‘Other’.

4.4.24 CPP/COL/CPF/BV-20-I [Configure Cycling Power Vector for Notification]

• Test Purpose

Verify that the Collector IUT can configure a CP Sensor (Lower Tester) to notify Cycling Power Vector characteristics.

• Reference

[3] 4.7 and 4.8

• Initial Condition

A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport is used to setup the transport and L2CAP channel and initiate connection to a CP Sensor.
The IUT has discovered the Client Characteristic Configuration Descriptor for a Cycling Power Vector characteristic contained in the Lower Tester.

Following the completion of the discovery procedures, the Lower Tester requests slow connection parameters (e.g. connection interval of one second using the GAP Connection Parameter Update procedure), and the IUT has updated the connection parameters as requested.

- **Test Procedure**
 1. The Upper Tester sends a command to the IUT to configure the CP Sensor to receive Cycling Power Vector characteristics.
 2. The IUT writes 0x0001 to the Client Characteristic Configuration descriptor of the Cycling Power Vector characteristic to enable the notification.
 3. The Lower Tester requests faster connection parameters in order to send the notification of the Cycling Power Vector characteristic (e.g. connection interval of 200 milliseconds using the GAP Connection Parameter Update procedure).
 4. The IUT accepts the request and updates the connection parameters as requested by the Lower Tester.
 5. The Lower Tester sends a Write Response to the IUT to acknowledge the write request sent in step 2.

![Diagram of L2CAP Connection Established over selected channel. IUT has discovered the Client Characteristic Configuration Descrip](image)

Figure 4.13: Configure Cycling Power Vector for Notification

- **Expected Outcome**
 Pass verdict

IUT sends a correctly formatted `ATT_Write_Request (0x12)` to the Lower Tester, with the handle set to that of the Client Characteristic Configuration Descriptor for a Cycling Power Vector characteristic, and the value set to «notification».
The IUT accepts a request from the Lower Tester and updates the connection parameter as requested.

4.4.25 CPP/COL/CPF/BV-21-I [Receive Cycling Power Vector Notifications]

- **Test Purpose**

 Verify that the Collector IUT can receive notifications of the Cycling Power Vector Characteristic, including all variants.

- **Reference**

 [3] 4.7 and 4.8

- **Initial Condition**

 A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport is used to setup the transport and L2CAP channel and initiate connection to a CP Sensor.

 The IUT has executed the procedure included in CPP/COL/CPF/BV-20-I [Configure Cycling Power Vector for Notification], which configures it to expect Cycling Power Vector Notifications.

 The IUT knows the handle of the Cycling Power Vector characteristic.

- **Test Procedure**

 1. The Lower Tester sends an `ATT_Handle_Value_Notification` containing a Cycling Power Vector characteristic value to the IUT.

 2. The Lower Tester sends one Cycling Power Vector characteristic notification for each Test Pattern shown in the following table. For each Test Pattern, the value of the Flags field is shown along with the corresponding pass criteria.

<table>
<thead>
<tr>
<th>Test Pattern</th>
<th>Sensor Measurement Context of the Cycling Power Feature characteristic</th>
<th>Flags Field Value</th>
<th>Pass Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Force based (0)</td>
<td>00000100</td>
<td>Only optional field present is Instantaneous Force Magnitude Array.</td>
</tr>
<tr>
<td>2</td>
<td>Force based (0)</td>
<td>00000111</td>
<td>Only optional fields present are Cumulative Crank Revolutions, Last Crank Event Time, First Crank Measurement Angle and Instantaneous Force Magnitude Array.</td>
</tr>
<tr>
<td>3</td>
<td>Torque based (1)</td>
<td>00001000</td>
<td>Only optional field present is Instantaneous Torque Magnitude Array.</td>
</tr>
<tr>
<td>4</td>
<td>Torque based (1)</td>
<td>00001011</td>
<td>Only optional fields present are Cumulative Crank Revolutions, Last Crank Event Time, First Crank Measurement Angle and Instantaneous Torque Magnitude Array.</td>
</tr>
</tbody>
</table>

Table 4.14: Receive Cycling Power Vector Notifications
Figure 4.14: Receive Cycling Power Vector Notifications

- Expected Outcome
 Pass verdict

IUT is able to correctly parse the received Cycling Power Vector values according to the pass criteria in the table above. The reported Cycling Power Measurement field values match the ones sent by the Lower Tester.

4.4.26 CPP/COL/CPF/BV-22-I [Receive Cycling Power Vector Notifications – Cumulative Crank Revolutions Roll Over]

- Test Purpose
 Verify that the Collector IUT can receive notifications of the Cycling Power Vector Characteristic and properly calculate cadence when the value of the Cumulative Crank Revolutions field rolls over.

- Reference
 [3] 4.7 and 4.8

- Initial Condition
 A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport is used to setup the transport and L2CAP channel and initiate connection to a CP Sensor.

 The IUT has executed the procedure included in CPP/COL/CPF/BV-20-I [Configure Cycling Power Vector for Notification], which configures it to expect Cycling Power Vector Notifications.

 The IUT knows the handle of the Cycling Power Vector characteristic.

- Test Procedure
 Perform an action on the Lower Tester that will induce it to set the Cumulative Crank Revolutions values and the Last Crank Event Time values in the table below such as to induce a Cumulative Crank Revolutions rollover event.
Table 4.15: Receive Cycling Power Vector Notifications – Cumulative Crank Revolutions Rollover

<table>
<thead>
<tr>
<th>Cumulative Crank Revolutions</th>
<th>Last Crank Event Time [1/1024s]</th>
<th>Expected Instantaneous Cadence [rpm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>65534</td>
<td>65534</td>
</tr>
<tr>
<td></td>
<td>9300</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>9982</td>
<td>9982</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>11348</td>
<td>11348</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>00</td>
</tr>
<tr>
<td>4</td>
<td>12030</td>
<td>12030</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>13396</td>
<td>13396</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>90</td>
</tr>
</tbody>
</table>

The Lower Tester sends five `ATT_Handle_Value_Notifications` containing a Cycling Power Vector characteristic value to the IUT (corresponding to the sequence of rows in the table above) that simulate a regular and consistent crank rotation as on a bike including a Cumulative Crank Revolutions field rollover event.

The IUT responds correctly when the Cumulative Crank Revolutions value rolls over.

- **Expected Outcome**
 - **Pass verdict**

 IUT receives notifications of Cycling Power Vector values from the Lower Tester that include Crank Revolution Data.

 IUT correctly calculates consistent instantaneous cadence values before and after the rollover event.

4.4.27 CPP/COL/CPF/BV-23-I [Receive Cycling Power Vector Notifications – Last Crank Event Time Roll Over]

- **Test Purpose**
 Verify that the Collector IUT can receive notifications of the Cycling Power Vector Characteristic and properly calculate cadence when the value of the Last Crank Event Time field rolls over.

- **Reference**
 [3] 4.7 and 4.8

- **Initial Condition**
 A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport is used to setup the transport and L2CAP channel and initiate connection to a CP Sensor.

 The IUT has executed the procedure included in CPP/COL/CPF/BV-20-I [Configure Cycling Power Vector for Notification], which configures it to expect Cycling Power Vector Notifications.

 The IUT knows the handle of the Cycling Power Vector characteristic.

- **Test Procedure**
1. Perform an action on the Lower Tester that will induce it to set the Cumulative Crank Revolutions values and the Last Crank Event Time values in the table below such as to induce a Last Crank Event Time rollover event.

<table>
<thead>
<tr>
<th>Cumulative Crank Revolutions</th>
<th>Last Crank Event Time [1/1024s]</th>
<th>Expected Instantaneous Cadence [rpm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>64000</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>64682</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>512</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>1194</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2560</td>
</tr>
</tbody>
</table>

Table 4.16: Receive Cycling Power Vector Notifications – Last Crank Event Time Rollover

2. The Lower Tester sends five \texttt{ATT_Handle_Value_Notifications} containing a Cycling Power Vector characteristic value to the IUT (corresponding to the sequence of rows in the table above) that simulate a regular and consistent crank rotation as on a bike including a Last Crank Event Time field rollover event.

3. The IUT responds correctly when the Last Crank Event Time value rolls over.

- Expected Outcome

 Pass verdict

 IUT receives notifications of Cycling Power Vector values from the Lower Tester that include Crank Revolution Data.

 IUT correctly calculates consistent instantaneous cadence values before and after the rollover event.

4.4.28 CPP/COL/CPF/BI-05-I [Receive Cycling Power Vector Notifications with reserved flags]

- Test Purpose

 Verify that the Collector IUT can receive notifications of the Cycling Power Vector Characteristic from a CP Sensor including reserved flags.

- Reference

 [3] 4.7 and 4.8

- Initial Condition

 A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport is used to setup the transport and L2CAP channel and initiate connection to a CP Sensor.

 The IUT has executed the procedure included in CPP/COL/CPF/BI-20-I [Configure Cycling Power Vector for Notification], which configures it to expect Cycling Power Vector Notifications.

 The IUT knows the handle of the Cycling Power Vector characteristic.
• Test Procedure

The Lower Tester sends an `ATT_Handle_Value_Notification` containing a Cycling Power Vector characteristic value to the IUT. There are many combinations of reserved flag settings. For this test use Flags = 0xC4. This includes reserved bits 7 and 6 = 11. Only optional fields present in the Cycling Power Vector characteristic is the Instantaneous Force Magnitude Array, so bit 2 of the Flags field is set to 1 and other bits are set to 0.

![Diagram](image)

Figure 4.15: Receive Cycling Power Vector Notifications with reserved flags

• Expected Outcome

Pass verdict

IUT reports the received Cycling Power Vector value to the Upper Tester. The reported Cycling Power Measurement value matches the one sent by the Lower Tester, including the reserved bits of the Flags field.

4.4.29 CPP/COL/CPF/BV-24-I [Lost Bond Procedure when using LE Transport]

• Test Purpose

Verify that the Collector IUT starts encryption with a bonded CP Sensor on reconnection and rediscovers and reconfigures CP Sensor if bond is lost.

• Reference

[3] 7.2.1

• Initial Condition

The IUT and the Lower Tester have previously bonded.

The IUT has configured the Lower Tester to enable notifications on the Cycling Power Measurement characteristic of the Lower Tester's Cycling Power Service.

The Lower Tester has the "Service Changed" characteristic.

No connection is established between the IUT and Lower Tester.
The bond is deleted at the Lower Tester.

• Test Procedure
 1. The Lower Tester begins advertising using GAP undirected connectable mode.
 2. The IUT establishes a connection to the Lower Tester.
 3. The Lower Tester does not send any notifications to IUT.
 4. The IUT starts encryption when the connection is established and rediscover and reconfigures the CP Sensor upon detection of the lost bond.

• Expected Outcome
 Pass verdict
 The IUT starts encryption when the connection is established.
 The IUT rediscover the Cycling Power Service.
 The IUT reconfigures the Client Characteristic Configuration descriptors of the Cycling Power Measurement characteristic, the Cycling Power Control Point characteristic and the Cycling Power Vector (if supported).

4.4.30 CPP/COL/CPF/BV-25-I [Lost Bond Procedure when using BR/EDR transport]

• Test Purpose
 Verify that the Collector IUT reconfigures the CP Sensor if the bond is lost.
 In case of BR/EDR, either the Lower Tester or Collector IUT could initiate a connection when they are bonded. The device initiating the connection becomes a master and is referred to herein as “master to be”, and the device accepting the connection becomes a slave and is referred to herein as “slave to be”. Verify that the “master to be” starts encryption with a bonded “slave to be” on reconnection.

• Reference
 [3] 7.3. 2

• Initial Condition
 The IUT and the Lower Tester have previously bonded.
 The IUT has configured the Lower Tester to enable notifications on the Cycling Power Measurement characteristic of the Lower Tester's Cycling Power Service.
 The Lower Tester has the «Service Changed» characteristic.
 No connection is established between the IUT and Lower Tester.
 The bond is deleted at the Lower Tester.

• Test Procedure
 1. The “slave to be” is in connectable mode.
 2. The “master to be” establishes a connection to the “slave to be”.
3. The Lower Tester does not send any notifications to IUT.
4. The “master to be” starts encryption when the connection is established.
5. The IUT rediscovers and reconfigures the CP Sensor upon detection of the lost bond.

- **Expected Outcome**

 Pass verdict

 The “master to be” starts encryption when the connection is established.

 The IUT rediscovers the Cycling Power Service.

 The IUT reconfigures the Client Characteristic Configuration descriptors of the Cycling Power Measurement characteristic, the Cycling Power Control Point characteristic and the Cycling Power Vector (if supported).

4.4.31 CPP/COL/CPF/BV-26-I [Configure Cycling Power Measurement for Broadcast]

- **Test Purpose**

 Verify that the Collector IUT can configure a CP Sensor (Lower Tester) to broadcast Cycling Power Measurement characteristics (e.g. include the characteristic value in a undirected non-connectable advertisement).

- **Reference**

 [3] 4.5.1

- **Initial Condition**

 A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport is used to setup the transport and L2CAP channel and initiate connection to a CP Sensor.

 The IUT has discovered the Server Characteristic Configuration Descriptor for a Cycling Power Measurement characteristic contained in the Lower Tester.

- **Test Procedure**

 The Upper Tester sends a command to the IUT to configure the CP Sensor to broadcast the Cycling Power Measurement characteristics (e.g. include the characteristic value in an undirected non-connectable advertisement).
• Expected Outcome

Pass verdict

IUT sends a correctly formatted \textit{ATT_Write_Request} (0x12) to the Lower Tester, with the handle set to that of the Server Characteristic Configuration Descriptor for a Cycling Power Measurement characteristic, and the value set to «broadcast».

4.4.32 CPP/OBS/CPF/BV-27-I [Receive Cycling Power Measurement Broadcast]

• Test Purpose

Verify that the CP Observer IUT can receive undirected non-connectable advertisement with the Cycling Power Measurement Characteristic, including all variants.

• Reference

[3] 6.1

• Initial Condition

Perform the preamble described in Section 4.2.5.

The IUT knows the UUID of the Cycling Power Service.

• Test Procedure

The Lower Tester sends one or more undirected non-connectable advertisements including the Cycling Power Measurement characteristic value for each Test Pattern shown in the following table. For each Test Pattern, the value of the Flags field is shown along with the corresponding pass criteria.

<table>
<thead>
<tr>
<th>Test Pattern</th>
<th>Flags Field Value ((\text{bit}15 \ldots \text{bit}0))</th>
<th>Pass Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>000000000 – 00000001</td>
<td>Only optional field present is Pedal Power Balance with the Pedal Power Balance Reference set to “Unknown”.</td>
</tr>
<tr>
<td>2</td>
<td>000000000 – 00000011</td>
<td>Only optional field present is Pedal Power Balance with the Pedal Power Balance Reference set to “Left”.</td>
</tr>
</tbody>
</table>
Test Pattern Flags Field Value (bit15 ... bit0) Pass Criteria

<table>
<thead>
<tr>
<th>Test Pattern</th>
<th>Flags Field Value (bit15 ... bit0)</th>
<th>Pass Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>00000000 – 00000100</td>
<td>Only optional field present is Accumulated Torque with the Accumulated Torque Source set to “Wheel based”.</td>
</tr>
<tr>
<td>4</td>
<td>00000000 – 00001100</td>
<td>Only optional field present is Accumulated Torque with the Accumulated Torque Source set to “Crank based”.</td>
</tr>
<tr>
<td>5</td>
<td>00000000 – 00010000</td>
<td>Only optional fields present are Cumulative Wheel Revolutions and Last Wheel Event Time.</td>
</tr>
<tr>
<td>6</td>
<td>00000000 – 00100000</td>
<td>Only optional fields present are Cumulative Crank Revolutions and Last Crank Event Time.</td>
</tr>
<tr>
<td>7</td>
<td>00000000 – 01000000</td>
<td>Only optional fields present are Maximum Force Magnitude and Minimum Force Magnitude.</td>
</tr>
<tr>
<td>8</td>
<td>00000000 – 10000000</td>
<td>Only optional fields present are Maximum Torque Magnitude and Minimum Torque Magnitude.</td>
</tr>
<tr>
<td>9</td>
<td>00000001 – 00000000</td>
<td>Only optional fields present are Maximum Angle and Minimum Angle.</td>
</tr>
<tr>
<td>10</td>
<td>00000100 – 00000000</td>
<td>Only optional field present is Top Dead Spot.</td>
</tr>
<tr>
<td>11</td>
<td>00000100 – 00000000</td>
<td>Only optional field present is Bottom Dead Spot.</td>
</tr>
<tr>
<td>12</td>
<td>00001000 – 00000000</td>
<td>Only optional field present is Accumulated Energy.</td>
</tr>
<tr>
<td>13</td>
<td>00100000 – 00000000</td>
<td>No optional field present. Offset Compensation Indicator set to True.</td>
</tr>
</tbody>
</table>

Table 4.17: Receive Cycling Power Measurement Broadcast

- **Expected Outcome**

 Pass verdict

 IUT is able to correctly parse the received Cycling Power Measurement values according to the pass criteria in the table above. The reported Cycling Power Measurement field values match the ones sent by the Lower Tester.

4.4.33 CPP/OBS/CPF/BV-28-I [Receive Cycling Power Measurement Broadcast – Accumulated Torque Roll Over]

- **Test Purpose**

 Verify that the Collector IUT can receive undirected non-connectable advertisement with the Cycling Power Measurement characteristic and properly calculate accumulated torque when the value of the Accumulated Torque field rolls over.

- **Reference**

 [3] 6.1

- **Initial Condition**
Perform the preamble described in Section 4.2.5.

The IUT knows the UUID of the Cycling Power Service.

- **Test Procedure**
 1. Perform an action on the Lower Tester that will induce it to set the Accumulated Torque values in the table below such as to induce an Accumulated Torque rollover event.

<table>
<thead>
<tr>
<th>Accumulated Torque Value [1/32 Nm]</th>
<th>Expected Accumulated Torque at IUT [Nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 64960 (0xFDC0)</td>
<td>2030.0</td>
</tr>
<tr>
<td>2 65280 (0xFF00)</td>
<td>2040.0</td>
</tr>
<tr>
<td>3 96 (0x0060)</td>
<td>2050.0</td>
</tr>
<tr>
<td>4 416 (0x01A0)</td>
<td>2060.0</td>
</tr>
<tr>
<td>5 736 (0x02E0)</td>
<td>2070.0</td>
</tr>
</tbody>
</table>

Table 4.18: Receive Cycling Power Measurement Broadcast – Accumulated Torque Rollover

 2. The Lower Tester sends five undirected non-connectable advertisements containing a Cycling Power Measurement characteristic value to the IUT (corresponding to the sequence of rows in the table above) that simulate a regular and consistent torque accumulation as on a bike including an Accumulated Torque field rollover event.

 3. The IUT responds correctly when the Accumulated Torque value rolls over.

- **Expected Outcome**

 Pass verdict

 IUT receives notifications of Cycling Power Measurement values from the Lower Tester that include Accumulated Torque field.

 IUT correctly calculates consistent accumulated torque values before and after the rollover event.

4.4.34 CPP/OBS/CPF/BV-29-I [Receive Cycling Power Measurement Broadcast – Last Wheel Event Time Roll Over]

- **Test Purpose**

 Verify that the Collector IUT can receive undirected non-connectable advertisement with the Cycling Power Measurement characteristic and properly calculate accumulated torque when the value of the Last Wheel Event Time field rolls over.

- **Reference**

 [3] 6.1

- **Initial Condition**

 Perform the preamble described in Section 4.2.5.

 The IUT knows the UUID of the Cycling Power Service.
• **Test Procedure**

1. Configure the IUT for Instantaneous Speed calculation with a wheel circumference of 210 centimeters. An IUT may be configured to an alternative value for calculation. Any alternative value shall be noted and included in testing evidence to support the calculated value of Instantaneous Speed.

2. Perform an action on the Lower Tester that will induce it to set the Cumulative Wheel Revolutions values and the Last Wheel Event Time values in the table below such as to induce a Last Wheel Event Time rollover event.

<table>
<thead>
<tr>
<th>Cumulative Wheel Revolution</th>
<th>Last Wheel Event Time [1/2048s]</th>
<th>Expected Instantaneous Speed at IUT [km/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>1008</td>
<td>60.48</td>
</tr>
<tr>
<td>3</td>
<td>1016</td>
<td>60.48</td>
</tr>
<tr>
<td>4</td>
<td>1024</td>
<td>60.48</td>
</tr>
<tr>
<td>5</td>
<td>1032</td>
<td>60.48</td>
</tr>
</tbody>
</table>

Table 4.19: Receive Cycling Power Measurement Broadcast – Last Wheel Event Time Rollover

3. The Lower Tester sends five undirected non-connectable advertisements containing a Cycling Power Measurement characteristic value to the IUT (corresponding to the sequence of rows in the table above) that simulate a regular and consistent wheel rotation as on a bike including a Last Wheel Event Time field rollover event.

4. The IUT responds correctly when the Last Wheel Event Time value rolls over.

• **Expected Outcome**

 Pass verdict

 IUT receives notifications of Cycling Power Measurement values from the Lower Tester that include Wheel Revolution Data.

 IUT correctly calculates consistent instantaneous speed values before and after the rollover event.

4.4.35 CPP/OBS/CPF/BV-30-I [Receive Cycling Power Measurement Broadcast – Cumulative Crank Revolutions Roll Over]

• **Test Purpose**

 Verify that the Collector IUT can receive undirected non-connectable advertisement with the Cycling Power Measurement characteristic and properly calculate accumulated torque when the value of the Cumulative Crank Revolutions field rolls over.

• **Reference**

 [3] 6.1

• **Initial Condition**

 Perform the preamble described in Section 4.2.5.
The IUT knows the UUID of the Cycling Power Service.

- Test Procedure
 1. Perform an action on the Lower Tester that will induce it to set the Cumulative Crank Revolutions values and the Last Crank Event Time values in the table below such as to induce a Cumulative Crank Revolutions rollover event.

<table>
<thead>
<tr>
<th>Cumulative Crank Revolutions</th>
<th>Last Crank Event Time [1/1024s]</th>
<th>Expected Instantaneous Cadence [rpm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>65470</td>
<td>9300</td>
</tr>
<tr>
<td>2</td>
<td>65530</td>
<td>9982</td>
</tr>
<tr>
<td>3</td>
<td>54</td>
<td>11348</td>
</tr>
<tr>
<td>4</td>
<td>114</td>
<td>12030</td>
</tr>
<tr>
<td>5</td>
<td>174</td>
<td>13396</td>
</tr>
</tbody>
</table>

Table 4.20: Receive Cycling Power Measurement Broadcast – Cumulative Crank Revolutions Rollover

2. The Lower Tester sends five undirected non-connectable advertisements containing a Cycling Power Measurement characteristic value to the IUT (corresponding to the sequence of rows in the table above) that simulate a regular and consistent crank rotation as on a bike including a Cumulative Crank Revolutions field rollover event.

3. The IUT responds correctly when the Cumulative Crank Revolutions value rolls over.

- Expected Outcome
 - Pass verdict

IUT receives notifications of Cycling Power Measurement values from the Lower Tester that include Crank Revolution Data.

IUT correctly calculates consistent instantaneous cadence values before and after the rollover event.

4.4.36 CPP/OBS/CPF/BV-31-I [Receive Cycling Power Measurement Broadcast – Last Crank Event Time Roll Over]

- Test Purpose
 Verify that the Collector IUT can receive undirected non-connectable advertisement with the Cycling Power Measurement characteristic and properly calculate accumulated torque when the value of the Last Crank Event Time field rolls over.

- Reference
 [3] 6.1

- Initial Condition
 Perform the preamble described in Section 4.2.5.

The IUT knows the UUID of the Cycling Power Service.
• Test Procedure

1. Perform an action on the Lower Tester that will induce it to set the Cumulative Crank Revolutions values and the Last Crank Event Time values in the table below such as to induce a Last Crank Event Time rollover event.

<table>
<thead>
<tr>
<th>Cumulative Crank Revolutions</th>
<th>Last Crank Event Time [1/1024s]</th>
<th>Expected Instantaneous Cadence [rpm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>64000</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>64682</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>512</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1194</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>2560</td>
</tr>
</tbody>
</table>

Table 4.21: Receive Cycling Power Measurement Broadcast – Last Crank Event Time Rollover

2. The Lower Tester sends five undirected non-connectable advertisements containing a Cycling Power Measurement characteristic value to the IUT (corresponding to the sequence of rows in the table above) that simulate a regular and consistent crank rotation as on a bike including a Last Crank Event Time field rollover event.

3. The IUT responds correctly when the Last Crank Event Time value rolls over.

• Expected Outcome

Pass verdict

IUT receives notifications of Cycling Power Measurement values from the Lower Tester that include Crank Revolution Data.

IUT correctly calculates consistent instantaneous cadence values before and after the rollover event.

4.4.37 CPP/OBS/CPF/BV-32-I [Receive Cycling Power Measurement Broadcast – Accumulated Energy Roll Over]

• Test Purpose

Verify that the Collector IUT can receive five undirected non-connectable advertisements of the Cycling Power Measurement Characteristic and properly calculate accumulated energy when the value of the Accumulated Energy field rolls over.

• Reference

[3] 6.1

• Initial Condition

Perform the preamble described in Section 4.2.5.

The IUT knows the UUID of the Cycling Power Service.

• Test Procedure
1. Perform an action on the Lower Tester that will induce it to set the Accumulated Energy values in the table below such as to induce an Accumulated Energy rollover event.

<table>
<thead>
<tr>
<th>Accumulated Energy Value [kJ]</th>
<th>Expected Accumulated Energy at IUT [kJ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>65532</td>
</tr>
<tr>
<td>2</td>
<td>65534</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 4.22: Receive Cycling Power Measurement Broadcast – Accumulated Energy Rollover

2. The Lower Tester sends five undirected non-connectable advertisements containing a Cycling Power Measurement characteristic value to the IUT (corresponding to the sequence of rows in the table above) that simulate a regular and consistent energy accumulation as on a bike including an Accumulated Energy field rollover event.

3. The IUT responds correctly when the Accumulated Energy value rolls over.
 - Expected Outcome
 Pass verdict
 IUT receives notifications of Cycling Power Measurement values from the Lower Tester that include Accumulated Energy field.
 IUT correctly calculates consistent accumulated energy values before and after the rollover event.

4.4.38 CPP/OBS/CPF/BI-06-I [Receive Cycling Power Measurement Broadcast with reserved flags]
 - Test Purpose
 Verify that the CP Observer IUT can receive undirected non-connectable advertisement with the Cycling Power Measurement Characteristic, including reserved flags.
 - Reference
 [3] 6.1
 - Initial Condition
 Perform the preamble described in Section 4.2.5.
 The IUT knows the UUID of the Cycling Power Service.
 - Test Procedure
 The Lower Tester sends one or more undirected non-connectable advertisements including the Cycling Power Measurement characteristic value to the IUT. There are many combinations of reserved flag settings. For this test use Flags = 0xE000. This includes reserved bits 15, 14, and 13 =
111. Optional fields are not present in the Cycling Power Measurement characteristic, so other bits of the Flags field are set to 0 as well as the Offset Compensation Indicator.

- Expected Outcome
 Pass verdict

IUT is able to correctly parse the received Cycling Power Measurement values according to the pass criteria in the table above. The reported Cycling Power Measurement field values match the ones sent by the Lower Tester, including the reserved bits of the Flags field.

4.4.39 CPP/OBS/CPF/BI-07-I [Receive Cycling Power Measurement Broadcast with additional octets not represented in the flags field]

- Test Purpose
 Verify that the CP Observer IUT can receive undirected non-connectable advertisement with the Cycling Power Measurement Characteristic, including additional octets not represented in the flags field.

- Reference
 [3] 6.1

- Initial Condition
 Perform the preamble described in Section 4.2.5.

 The IUT knows the UUID of the Cycling Power Service.

- Test Procedure
 The Lower Tester sends one or more undirected non-connectable advertisements including the Cycling Power Measurement characteristic value to the IUT. That value shall contain: Flags = 0x00 and Instantaneous Power. The optional fields are not present, and, at least, two additional octets not represented in the flags field are present. The total number of octets shall not exceed the maximum size allowed in an advertisement event.

- Expected Outcome
 Pass verdict

IUT reports the received Cycling Power Measurement value to the Upper Tester with no additional octets. The reported Cycling Power Measurement value matches the one sent by the Lower Tester.

4.4.40 CPP/OBS/CPF/BV-33-I [Receive Cycling Power Measurement Broadcast from a Distributed Power System]

- Test Purpose
 Verify that the collector IUT can receive multiple Cycling Power Measurement broadcast from a distributed power system (e.g. 2 CP Sensors).

- Reference
 [3] 6.1
• Initial Condition

A preamble procedure defined in Section 4.2.5 is used to setup the IUT to receive the broadcast from the Lower Tester 1 including the Cycling Power Measurement characteristic. This preamble is repeated to setup the IUT to receive the broadcast from the Lower Tester 1 including the Cycling Power Measurement characteristic. The Lower Tester 1 simulates a CP Sensor located on the left pedal and the Lower Tester 2 simulates a CP Sensor located on the right pedal.

The IUT knows the UUID of the Cycling Power Service.

The IUT knows which Lower Tester correspond to which measured data (e.g. left or right).

• Test Procedure

1. The Lower Testers send one or more undirected non-connectable advertisements the Cycling Power Measurement characteristic value with at least the mandatory fields (e.g. the Flags field and the Instantaneous Power).

2. The IUT displays the values of the Instantaneous Power for each CP Sensor and decodes properly the other optional fields, if present.

• Expected Outcome

Pass verdict

For each undirected non-connectable advertisement sent to the IUT:

- The IUT reports the received Cycling Power Measurement values to the Upper Tester.

- The reported Cycling Power Measurement values match that sent by the Lower Tester.

4.4.41 CPP/OBS/CPF/BV-34-I [Receive Cycling Power Measurement Broadcast from a Distributed Power System – Calculates Total Instantaneous Power]

• Test Purpose

Verify that the collector IUT can receive multiple Cycling Power Measurement broadcast from a distributed power system (e.g. 2 CP Sensors) and calculates the total instantaneous power based on each instantaneous power component.

• Reference

[3] 6.1

• Initial Condition

A preamble procedure defined in Section 4.2.5 is used to setup the IUT to receive broadcast from the Lower Tester 1 including the Cycling Power Measurement characteristic. This preamble is repeated to setup the IUT to receive broadcast from the Lower Tester 1 including the Cycling Power Measurement characteristic. The Lower Tester 1 simulates a CP Sensor located on the left pedal and the Lower Tester 2 simulates a CP Sensor located on the right pedal.

The IUT knows the UUID of the Cycling Power Service.

The IUT knows which Lower Tester correspond to which sensor (e.g. left or right).

• Test Procedure
1. Perform an action on the Lower Testers that will induce it to set the Instantaneous Power values in the table below.

<table>
<thead>
<tr>
<th>Instantaneous Power [W]</th>
<th>Expected Total Instantaneous Power [W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Tester 1 (Left Pedal)</td>
<td>Lower Tester 2 (Right Pedal)</td>
</tr>
<tr>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
</tr>
</tbody>
</table>

Table 4.23: Receive Cycling Power Measurement Broadcast from a Distributed Power System – Calculates Total Instantaneous Power

2. The Lower Testers send three undirected non-connectable advertisements containing a Cycling Power Measurement characteristic value to the IUT (corresponding to the sequence of rows in the table above) that simulate a regular and consistent power measurement as on a bike.

3. The IUT displays the value of the total instantaneous power value calculated by summing both values coming from the two different Lower Testers.

 • Expected Outcome

 Pass verdict

 IUT receives undirected non-connectable advertisements containing Cycling Power Measurement values from the Lower Testers that include the Flags field and, at least, the Instantaneous Power field.

 IUT correctly calculates consistent total instantaneous power.

4.4.42 CPP/OBS/CPF/BV-35-I [Receive Cycling Power Measurement Broadcast from a Distributed Power System – Calculates Pedal Power Balance]

 • Test Purpose

 Verify that the collector IUT can receive multiple Cycling Power Measurement broadcast from a distributed power system (e.g. 2 CP Sensors) and calculates the pedal power balance based on each instantaneous power component.

 • Reference

 [3] 6.1

 • Initial Condition

 A preamble procedure defined in Section 4.2.5 is used to setup the IUT to receive broadcast from the Lower Tester 1 including the Cycling Power Measurement characteristic. This preamble is repeated to setup the IUT to receive broadcast from the Lower Tester 1 including the Cycling Power Measurement characteristic. The Lower Tester 1 simulates a CP Sensor located on the left pedal and the Lower Tester 2 simulates a CP Sensor located on the right pedal.

 The IUT knows the UUID of the Cycling Power Service.
The IUT knows which Lower Tester correspond to which sensor (e.g. left or right).

- **Test Procedure**
 1. Perform an action on the Lower Testers that will induce it to set the Instantaneous Power values in the table below.

<table>
<thead>
<tr>
<th>Instantaneous Power [W]</th>
<th>Expected Pedal Power Balance [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Tester 1 (Left Pedal)</td>
<td>Lower Tester 2 (Right Pedal)</td>
</tr>
<tr>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
</tr>
</tbody>
</table>

Table 4.24: Receive Cycling Power Measurement Broadcast from a Distributed Power System – Calculates Pedal Power Balance

2. The Lower Testers send three undirected non-connectable advertisements containing a Cycling Power Measurement characteristic value to the IUT (corresponding to the sequence of rows in the table above) that simulate a regular and consistent power measurement as on a bike.

3. The IUT displays the value of the pedal power balance value calculated with the values coming from the two different Lower Testers.

- **Expected Outcome**
 - **Pass verdict**

IUT receives undirected non-connectable advertisements containing Cycling Power Measurement values from the Lower Testers that include the Flags field and, at least, the Instantaneous Power field.

IUT correctly calculates consistent pedal power balance.

4.4.43 CPP/COL/CPF/BV-36-I [Receive Cycling Power Measurement Notifications from a Legacy CP Sensor]

- **Test Purpose**
 Verify that the Collector IUT can receive notifications of the Cycling Power Measurement Characteristic, including all variants.

- **Reference**
 [3] 4.5

- **Initial Condition**
 A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport is used to setup the transport and L2CAP channel and initiate connection to a CP Sensor.

The Lower Tester has the Distributed System Support bits of the Cycling Power Feature characteristic set to "Unspecified" (0b00).
The IUT has read the Cycling Power Feature characteristic.

The IUT has executed the procedure included in CPP/COL/CPF/BV-05-I [Configure Cycling Power Measurement for Notification], which configures it to expect Cycling Power Measurement Notifications.

The IUT knows the handle of the Cycling Power Measurement characteristic.

- Test Procedure
 1. The Lower Tester sends an *ATT_Handle_Value_Notification* containing a Cycling Power Measurement characteristic value to the IUT.
 2. The Lower Tester sends one Cycling Power Measurement characteristic notification for each Test Pattern shown in the following table. For each Test Pattern, the value of the Flags field is shown along with the corresponding pass criteria.

<table>
<thead>
<tr>
<th>Test Pattern</th>
<th>Flags Field Value</th>
<th>Pass Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00000000 – 00000001</td>
<td>Only optional field present is Pedal Power Balance with the Pedal Power Balance Reference set to “Unknown”.</td>
</tr>
<tr>
<td>2</td>
<td>00000000 – 00000011</td>
<td>Only optional field present is Pedal Power Balance with the Pedal Power Balance Reference set to “Left”.</td>
</tr>
<tr>
<td>3</td>
<td>00000000 – 00000100</td>
<td>Only optional field present is Accumulated Torque with the Accumulated Torque Source set to “Wheel based”.</td>
</tr>
<tr>
<td>4</td>
<td>00000000 – 00001100</td>
<td>Only optional field present is Accumulated Torque with the Accumulated Torque Source set to “Crank based”.</td>
</tr>
<tr>
<td>5</td>
<td>00000000 – 00010000</td>
<td>Only optional fields present are Cumulative Wheel Revolutions and Last Wheel Event Time.</td>
</tr>
<tr>
<td>6</td>
<td>00000000 – 00100000</td>
<td>Only optional fields present are Cumulative Crank Revolutions and Last Crank Event Time.</td>
</tr>
<tr>
<td>7</td>
<td>00000000 – 01000000</td>
<td>Only optional fields present are Maximum Force Magnitude and Minimum Force Magnitude.</td>
</tr>
<tr>
<td>8</td>
<td>00000000 – 10000000</td>
<td>Only optional fields present are Maximum Torque Magnitude and Minimum Torque Magnitude.</td>
</tr>
<tr>
<td>9</td>
<td>00000001 – 00000000</td>
<td>Only optional fields present are Maximum Angle and Minimum Angle.</td>
</tr>
<tr>
<td>10</td>
<td>00000010 – 00000000</td>
<td>Only optional field present is Top Dead Spot.</td>
</tr>
<tr>
<td>11</td>
<td>00000100 – 00000000</td>
<td>Only optional field present is Bottom Dead Spot.</td>
</tr>
<tr>
<td>12</td>
<td>00001000 – 00000000</td>
<td>Only optional field present is Accumulated Energy.</td>
</tr>
<tr>
<td>13</td>
<td>00010000 – 00000000</td>
<td>No optional field present. Offset Compensation Indicator set to True.</td>
</tr>
</tbody>
</table>

Table 4.25: Receive Cycling Power Measurement Notifications from a Legacy CP Sensor
• Expected Outcome

Pass verdict

IUT is able to correctly parse the received Cycling Power Measurement values according to the pass criteria in the table above. The reported Cycling Power Measurement field values match the ones sent by the Lower Tester.

4.4.44 CPP/COL/CPF/BV-37-I [Receive Cycling Power Measurement Notifications from a CP Sensor – Not For Use In A Distributed Power System]

• Test Purpose

Verify that the Collector IUT can receive notifications of the Cycling Power Measurement Characteristic, including all variants.

• Reference

[3] 4.5

• Initial Condition

A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport is used to setup the transport and L2CAP channel and initiate connection to a CP Sensor.

The Lower Tester has the Distributed System Support bits of the Cycling Power Feature characteristic set to “Not For Use In A Distributed Power System” (0b01).

The IUT has read the Cycling Power Feature characteristic.

The IUT has executed the procedure included in CPP/COL/CPF/BV-05-I [Configure Cycling Power Measurement for Notification], which configures it to expect Cycling Power Measurement Notifications.

The IUT knows the handle of the Cycling Power Measurement characteristic.
• Test Procedure

1. The Lower Tester sends an ATT_Handle_Value_Notification containing a Cycling Power Measurement characteristic value to the IUT.

2. The Lower Tester sends one Cycling Power Measurement characteristic notification for each Test Pattern shown in the following table. For each Test Pattern, the value of the Flags field is shown along with the corresponding pass criteria. The value of the Instantaneous Power value is set to 150 Watts.

<table>
<thead>
<tr>
<th>Test Pattern</th>
<th>Flags Field Value (bit15 ... bit0)</th>
<th>Pass Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00000000 – 00000001</td>
<td>Only optional field present is Pedal Power Balance with the Pedal Power Balance Reference set to “Unknown”.</td>
</tr>
<tr>
<td>2</td>
<td>00000000 – 00000011</td>
<td>Only optional field present is Pedal Power Balance with the Pedal Power Balance Reference set to “Left”.</td>
</tr>
<tr>
<td>3</td>
<td>00000000 – 00000100</td>
<td>Only optional field present is Accumulated Torque with the Accumulated Torque Source set to “Wheel based”.</td>
</tr>
<tr>
<td>4</td>
<td>00000000 – 00001100</td>
<td>Only optional field present is Accumulated Torque with the Accumulated Torque Source set to “Crank based”.</td>
</tr>
<tr>
<td>5</td>
<td>00000000 – 00010000</td>
<td>Only optional fields present are Cumulative Wheel Revolutions and Last Wheel Event Time.</td>
</tr>
<tr>
<td>6</td>
<td>00000000 – 00100000</td>
<td>Only optional fields present are Cumulative Crank Revolutions and Last Crank Event Time.</td>
</tr>
<tr>
<td>7</td>
<td>00000000 – 01000000</td>
<td>Only optional fields present are Maximum Force Magnitude and Minimum Force Magnitude.</td>
</tr>
<tr>
<td>8</td>
<td>00000000 – 10000000</td>
<td>Only optional fields present are Maximum Torque Magnitude and Minimum Torque Magnitude.</td>
</tr>
<tr>
<td>9</td>
<td>00000001 – 00000000</td>
<td>Only optional fields present are Maximum Angle and Minimum Angle.</td>
</tr>
<tr>
<td>10</td>
<td>00000010 – 00000000</td>
<td>Only optional field present is Top Dead Spot.</td>
</tr>
<tr>
<td>11</td>
<td>00000100 – 00000000</td>
<td>Only optional field present is Bottom Dead Spot.</td>
</tr>
<tr>
<td>12</td>
<td>00010000 – 00000000</td>
<td>Only optional field present is Accumulated Energy.</td>
</tr>
<tr>
<td>13</td>
<td>00100000 – 00000000</td>
<td>No optional field present. Offset Compensation Indicator set to True.</td>
</tr>
</tbody>
</table>

Table 4.26: Receive Cycling Power Measurement Notifications from a CP Sensor – Not For Use In A Distributed Power System
• Expected Outcome

Pass verdict

IUT is able to correctly parse the received Cycling Power Measurement values according to the pass criteria in the table above. The reported Cycling Power Measurement field values match the ones sent by the Lower Tester and the Instantaneous Power value is equal to 150 Watts.

4.4.45 CPP/COL/CPF/BV-38-I [Receive Cycling Power Measurement Notifications from a CP Sensor – Can Be Used In A Distributed Power System]

• Test Purpose

Verify that the Collector IUT can receive notifications of the Cycling Power Measurement Characteristic, including all variants.

• Reference

[3] 4.5

• Initial Condition

A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport is used to setup the transport and L2CAP channel and initiate connection to a CP Sensor.

The Lower Tester is configured with a Sensor Location set to “Left Pedal” (0x07).

The Lower Tester has the Distributed System Support bits of the Cycling Power Feature characteristic set to “Can be used in a distributed power system” (0b10).

The IUT has read the Cycling Power Feature characteristic.

The IUT has executed the procedure included in CPP/COL/CPF/BV-05-I [Configure Cycling Power Measurement for Notification], which configures it to expect Cycling Power Measurement Notifications.

The IUT knows the handle of the Cycling Power Measurement characteristic.
Test Procedure

1. The Lower Tester sends an `ATT_Handle_Value_Notification` containing a Cycling Power Measurement characteristic value to the IUT.

2. The Lower Tester sends one Cycling Power Measurement characteristic notification for each Test Pattern shown in the following table. For each Test Pattern, the value of the Flags field is shown along with the corresponding pass criteria. The value of the Instantaneous Power value sent by the Lower Tester 1 is set to 75 Watts.

<table>
<thead>
<tr>
<th>Test Pattern</th>
<th>Flags Field Value (bit15 ... bit0)</th>
<th>Pass Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00000000 – 00000001</td>
<td>Only optional field present is Pedal Power Balance with the Pedal Power Balance Reference set to “Unknown”.</td>
</tr>
<tr>
<td>2</td>
<td>00000000 – 00000011</td>
<td>Only optional field present is Pedal Power Balance with the Pedal Power Balance Reference set to “Left”.</td>
</tr>
<tr>
<td>3</td>
<td>00000000 – 00000100</td>
<td>Only optional field present is Accumulated Torque with the Accumulated Torque Source set to “Wheel based”.</td>
</tr>
<tr>
<td>4</td>
<td>00000000 – 00001100</td>
<td>Only optional field present is Accumulated Torque with the Accumulated Torque Source set to “Crank based”.</td>
</tr>
<tr>
<td>5</td>
<td>00000000 – 00010000</td>
<td>Only optional fields present are Cumulative Wheel Revolutions and Last Wheel Event Time.</td>
</tr>
<tr>
<td>6</td>
<td>00000000 – 00100000</td>
<td>Only optional fields present are Cumulative Crank Revolutions and Last Crank Event Time.</td>
</tr>
<tr>
<td>7</td>
<td>00000000 – 01000000</td>
<td>Only optional fields present are Maximum Force Magnitude and Minimum Force Magnitude.</td>
</tr>
<tr>
<td>8</td>
<td>00000000 – 10000000</td>
<td>Only optional fields present are Maximum Torque Magnitude and Minimum Torque Magnitude.</td>
</tr>
<tr>
<td>9</td>
<td>00000001 – 00000000</td>
<td>Only optional fields present are Maximum Angle and Minimum Angle.</td>
</tr>
<tr>
<td>10</td>
<td>00000010 – 00000000</td>
<td>Only optional field present is Top Dead Spot.</td>
</tr>
<tr>
<td>11</td>
<td>00000100 – 00000000</td>
<td>Only optional field present is Bottom Dead Spot.</td>
</tr>
<tr>
<td>12</td>
<td>00010000 – 00000000</td>
<td>Only optional field present is Accumulated Energy.</td>
</tr>
<tr>
<td>13</td>
<td>00100000 – 00000000</td>
<td>No optional field present. Offset Compensation Indicator set to True.</td>
</tr>
</tbody>
</table>

Table 4.27: Receive Cycling Power Measurement Notifications from a CP Sensor – Can Be Used in a Distributed Power System
Expected Outcome

Pass verdict

IUT is able to correctly parse the received Cycling Power Measurement values according to the pass criteria in the table above. The reported Cycling Power Measurement field values match the ones sent by the Lower Tester except the Instantaneous Power value that may be multiplied by two by the IUT (i.e. 150 Watts).

Notes

The Instantaneous Power value reported by the IUT may be multiplied by two as explained in [3] 4.4.

4.4.46 CPP/COL/CPF/BV-39-I [Receive Cycling Power Measurement Notifications from two CP Sensors – Can Be Used In A Distributed Power System – Total Instantaneous Power]

Test Purpose

Verify that the collector IUT can receive multiple Cycling Power Measurement notifications from a distributed power system (e.g. two CP Sensors) and calculates the total instantaneous power based on each instantaneous power component.

Reference

[3] 4.5

Initial Condition

A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport is used to setup the transport and L2CAP channel and initiate connection to a CP Sensor. This preamble is repeated to initiate a connection to both CP Sensors (Lower Tester) involved in this test case. The first Lower Tester is configured with a Sensor Location set to “Left Pedal” (0x07) and the second Lower Tester is configured with a Sensor Location set to “Right Pedal” (0x08).

Both Lower Testers have the Distributed System Support bits of the Cycling Power Feature characteristic set to “Can be used in a distributed system” (0b10).

The IUT has read the Cycling Power Feature characteristic.
The IUT has executed the procedure included in CPP/COL/CPF/BV-05-I [Configure Cycling Power Measurement for Notification], which configures it to expect Cycling Power Measurement Notifications for both CP Sensors.

The IUT knows the handle of the Cycling Power Measurement characteristic of both CP Sensors.

- **Test Procedure**
 1. Perform an action on the Lower Tester that will induce it to set the Instantaneous Power values in the table below.

<table>
<thead>
<tr>
<th>Instantaneous Power [W]</th>
<th>Expected Total Instantaneous Power [W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Tester 1 (Left Pedal)</td>
<td>Lower Tester 2 (Right Pedal)</td>
</tr>
<tr>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>180</td>
</tr>
<tr>
<td>4</td>
<td>180</td>
</tr>
</tbody>
</table>

Table 4.28: Receive Cycling Power Measurement Notifications from two CP Sensors – Can Be Used In A Distributed Power System – Total Instantaneous Power

2. The Lower Testers send three ATT_Handle_Value_Notifications containing a Cycling Power Measurement characteristic value to the IUT (corresponding to the sequence of rows in the table above) that simulate a regular and consistent power measurement as on a bike.

3. The IUT displays the value of the total instantaneous power value calculated by summing both values coming from the two different Lower Testers (e.g. 420 Watts).

- **Expected Outcome**

 Pass verdict

 IUT receives notifications of Cycling Power Measurement values from the Lower Testers that include the Flags field and, at least, the Instantaneous Power field.

 IUT correctly calculates consistent total instantaneous power.

4.4.47 CPP/COL/CPF/BV-40-I [Receive Cycling Power Measurement Notifications from two CP Sensors – Can Be Used in A Distributed Power System – Pedal Power Balance]

- **Test Purpose**
 Verify that the collector IUT can receive multiple Cycling Power Measurement notifications from a distributed power system (e.g. two CP Sensors) and calculates the total instantaneous power based on each instantaneous power component.

- **Reference**
 [3] 4.5
• **Initial Condition**

A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport is used to setup the transport and L2CAP channel and initiate connection to a CP Sensor. This preamble is repeated to initiate a connection to both CP Sensors (Lower Tester) involved in this test case. The first Lower Tester is configured with a Sensor Location set to “Left Pedal” (0x07) and the second Lower Tester is configured with a Sensor Location set to “Right Pedal” (0x08).

Both Lower Testers have the Distributed System Support bits of the Cycling Power Feature characteristic set to “Can be used in a distributed system” (0b10).

The IUT has read the Cycling Power Feature characteristic.

The IUT has executed the procedure included in CPP/COL/CPF/BV-05-I [Configure Cycling Power Measurement for Notification], which configures it to expect Cycling Power Measurement Notifications for both CP Sensors.

The IUT knows the handle of the Cycling Power Measurement characteristic of both CP Sensors.

• **Test Procedure**

1. Perform an action on the Lower Tester that will induce it to set the Instantaneous Power values in the table below.

<table>
<thead>
<tr>
<th>Instantaneous Power [W]</th>
<th>Expected Pedal Power Balance [%] (Left Pedal as the reference)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Tester 1 (Left Pedal)</td>
<td>Lower Tester 2 (Right Pedal)</td>
</tr>
<tr>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>180</td>
</tr>
<tr>
<td>4</td>
<td>180</td>
</tr>
</tbody>
</table>

Table 4.29: Receive Cycling Power Measurement Notifications from two CP Sensors – Can Be Used in A Distributed Power System – Pedal Power Balance

2. The Lower Testers send three `ATT_Handle_Value_Notifications` containing a Cycling Power Measurement characteristic value to the IUT (corresponding to the sequence of rows in the table above) that simulate a regular and consistent power measurement as on a bike.

3. The IUT displays the value of the pedal power balance value calculated with the values coming from the two different Lower Testers.

• **Expected Outcome**

Pass verdict

IUT receives notifications of Cycling Power Measurement values from the Lower Testers that include the Flags field and, at least, the Instantaneous Power field.

IUT correctly calculates consistent pedal power balance.
4.4.48 CPP/COL/CPF/BV-41-I [Receive Cycling Power Measurement Notifications from two Legacy CP Sensors]

• Test Purpose
Verify that the Collector IUT can receive notifications of the Cycling Power Measurement Characteristic, including all variants.

• Reference
[3] 4.5

• Initial Condition
A preamble procedure defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport is used to setup the transport and L2CAP channel and initiate connection to a CP Sensor. This preamble is repeated to initiate a connection to both CP Sensors (Lower Tester) involved in this test case. The first Lower Tester is configured with a Sensor Location set to “Left Pedal” (0x07) and the second Lower Tester is configured with a Sensor Location set to “Right Pedal” (0x08).

Both Lower Testers have the Distributed System Support bits of the Cycling Power Feature characteristic set to “Undefined” (0b00).

The IUT has read the Cycling Power Feature characteristic.

The IUT has executed the procedure included in CPP/COL/CPF/BV-05-I [Configure Cycling Power Measurement for Notification], which configures it to expect Cycling Power Measurement Notifications for both CP Sensors.

The IUT knows the handle of the Cycling Power Measurement characteristic of both CP Sensors.

• Test Procedure
1. The Lower Testers send each an ATT_Handle_Value_Notification containing a Cycling Power Measurement characteristic value to the IUT.
2. The Lower Testers send one Cycling Power Measurement characteristic notification for each Test Pattern shown in the following table. For each Test Pattern, the value of the Flags field is shown along with the corresponding pass criteria.

<table>
<thead>
<tr>
<th>Test Pattern</th>
<th>Flags Field Value (bit15 … bit0)</th>
<th>Pass Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>000000000 – 00000001</td>
<td>Only optional field present is Pedal Power Balance with the Pedal Power Balance Reference set to “Unknown”.</td>
</tr>
<tr>
<td>2</td>
<td>000000000 – 00000011</td>
<td>Only optional field present is Pedal Power Balance with the Pedal Power Balance Reference set to “Left”.</td>
</tr>
<tr>
<td>3</td>
<td>000000000 – 00000100</td>
<td>Only optional field present is Accumulated Torque with the Accumulated Torque Source set to “Wheel based”.</td>
</tr>
<tr>
<td>4</td>
<td>000000000 – 00001100</td>
<td>Only optional field present is Accumulated Torque with the Accumulated Torque Source set to “Crank based”.</td>
</tr>
<tr>
<td>Test Pattern</td>
<td>Flags Field Value (bit15 ... bit0)</td>
<td>Pass Criteria</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>5</td>
<td>000000000 – 00010000</td>
<td>Only optional fields present are Cumulative Wheel Revolutions and Last Wheel Event Time.</td>
</tr>
<tr>
<td>6</td>
<td>000000000 – 00100000</td>
<td>Only optional fields present are Cumulative Crank Revolutions and Last Crank Event Time.</td>
</tr>
<tr>
<td>7</td>
<td>000000000 – 01000000</td>
<td>Only optional fields present are Maximum Force Magnitude and Minimum Force Magnitude.</td>
</tr>
<tr>
<td>8</td>
<td>000000000 – 10000000</td>
<td>Only optional fields present are Maximum Torque Magnitude and Minimum Torque Magnitude.</td>
</tr>
<tr>
<td>9</td>
<td>000000001 – 00000000</td>
<td>Only optional fields present are Maximum Angle and Minimum Angle.</td>
</tr>
<tr>
<td>10</td>
<td>000000100 – 00000000</td>
<td>Only optional field present is Top Dead Spot.</td>
</tr>
<tr>
<td>11</td>
<td>000001000 – 00000000</td>
<td>Only optional field present is Bottom Dead Spot.</td>
</tr>
<tr>
<td>12</td>
<td>000010000 – 00000000</td>
<td>Only optional field present is Accumulated Energy.</td>
</tr>
<tr>
<td>13</td>
<td>000100000 – 00000000</td>
<td>No optional field present. Offset Compensation Indicator set to True.</td>
</tr>
</tbody>
</table>

Table 4.30: Receive Cycling Power Measurement Notifications from two Legacy CP Sensors

- **Expected Outcome**

 Pass verdict

IUT is able to correctly parse the received Cycling Power Measurement values according to the pass criteria in the table above. The reported Cycling Power Measurement field values match the ones sent by the Lower Testers.
4.5 Service Procedures – Set Cumulative Value

This test group contains test cases to verify compliant operation when the Cycling Power Control Point Set Cumulative Value procedure is used.

4.5.1 CPP/COL/SPS/BV-01-I [Set Cumulative Value – Set to zero]

- Test Purpose
 Verify that the Collector IUT can perform the Set Cumulative Value procedure to set a zero value.

- Reference
 [3] 4.7.2.1

- Initial Condition
 Perform the preamble described in Section 4.2.3.

 The value of Cumulative Wheel Revolutions in the Lower Tester is set to a known non-zero value.

- Test Procedure
 1. A connection is established between the IUT and Lower Tester using the Preamble defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.
 2. The Lower Tester sends one or more notifications of the Cycling Power Measurement characteristic with the Cumulative Wheel Revolutions field set to a non-zero value.
 3. IUT writes the Set Cumulative Value Op Code (0x01) to the Cycling Power Control Point with a Parameter Value of 0x00000000.
 4. The Lower Tester sends an indication of the Cycling Power Control Point characteristic with the Response Code Op Code (0x20) and a Parameter representing Request Op Code (0x01) followed by the Response Code for ‘success’ (0x01).
 5. The IUT sends ATT_Handle_Value_Confirmation to the Lower Tester.
 6. The Lower Tester sends a notification of the Cycling Power Measurement characteristic with the Cumulative Wheel Revolutions field set to 0 (or close to 0).

- Expected Outcome
 Pass verdict
 The IUT receives one or more notifications of the Cycling Power Measurement characteristic with the Cumulative Wheel Revolutions field set to a non-zero value.
 After setting the value to zero, the IUT receives the next notification of the Cycling Power Measurement characteristic containing the Cumulative Wheel Revolutions with the value of the Cumulative Wheel Revolutions field set to 0 (or slightly higher in case of movement).

4.5.2 CPP/COL/SPS/BV-02-I [Set Cumulative Value - Set to non-zero]

- Test Purpose
 Verify that the Collector IUT can perform the Set Cumulative Value procedure to set a non-zero value.

- Reference
4.7.2.1

- **Initial Condition**
 Perform the preamble described in Section 4.2.3.

 The value of Cumulative Wheel Revolutions in the Lower Tester is set to a known value.

- **Test Procedure**
 1. A connection is established between the IUT and Lower Tester using the Preamble defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.
 2. The Lower Tester sends one or more notifications of the Cycling Power Measurement characteristic with the Cumulative Wheel Revolutions field set to any value.
 3. The IUT writes the Set Cumulative Value Op Code (0x01) to the Cycling Power Control Point with a Parameter Value that is different than the initial value (e.g. 0x0000FFFF).
 4. The Lower Tester sends an indication of the Cycling Power Control Point characteristic with the Response Code Op Code (0x20) and a Parameter representing Request Op Code (0x01) followed by the Response Code for ‘success’ (0x01).
 5. The IUT sends ATT_Handle_Value_Confirmation to the Lower Tester.
 6. The Lower Tester sends a notification of the Cycling Power Measurement characteristic with the Cumulative Wheel Revolutions field set to the specified value (or close to the specified value).

- **Expected Outcome**
 Pass verdict

 The IUT receives one or more notifications of the Cycling Power Measurement characteristic with the Cumulative Wheel Revolutions field set to the specified non-zero value.

 After setting the value, the IUT receives the next notification of the Cycling Power Measurement characteristic containing the Cumulative Wheel Revolutions field with the value of the Cumulative Wheel Revolutions field set to the specified value (or slightly higher in case of movement).

4.6 Service Procedures – Handle CP Sensor Parameters

This test group contains test cases to verify compliant operation when the IUT uses the Cycling Power Control Point to handle internal CP Sensor parameters (e.g. Set or Request).

4.6.1 CPP/COL/SPP/BV-01-I [Update Sensor Location]

- **Test Purpose**
 Verify that the Collector IUT can perform the Update Sensor Location procedure.

- **Reference**
 [3] 4.7.2.2

- **Initial Condition**
 Perform the preamble described in Section 4.2.3.

- **Test Procedure**
1. A connection is established between the IUT and Lower Tester using the Preamble defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.

2. IUT writes the Update Sensor Location Op Code (0x02) to the Cycling Power Control Point with the Parameter of this Control Point set to a location supported by the CP Sensor.

3. The Lower Tester sends an indication of the Cycling Power Control Point characteristic with the Response Code Op Code (0x20) and a Parameter representing Request Op Code (0x02) followed by the Response Code for ‘success’ (0x01).

4. The IUT sends ATT_Handle_Value_Confirmation to the Lower Tester.
 - Expected Outcome
 Pass verdict
 The Sensor Location value is updated with the correct value.
 The IUT receives the Request Op Code ‘success’.

4.6.2 CPP/COL/SPP/BV-02-I [Request Supported Sensor Locations]

- Test Purpose
 Verify that the Collector IUT can perform the Request Supported Sensor Locations procedure.

- Reference
 [3] 4.7.2.3

- Initial Condition
 Perform the preamble described in Section 4.2.3.

- Test Procedure
 1. A connection is established between the IUT and Lower Tester using the Preamble defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.
 2. IUT writes the Request Supported Sensor Location Op Code (0x03) to the Cycling Power Control Point with no Parameter.
 3. The Lower Tester sends an indication of the Cycling Power Control Point characteristic with the Response Code Op Code (0x20) and a Parameter representing Request Op Code (0x03) followed by the Response Code for ‘success’ (0x01) and a list of supported sensor locations.
 4. The IUT sends ATT_Handle_Value_Confirmation to the Lower Tester.
 - Expected Outcome
 Pass verdict
 The IUT receives a list of supported and valid sensor locations.

4.6.3 CPP/COL/SPP/BV-03-I [Set Crank Length]

- Test Purpose
 Verify that the Collector IUT can perform the Set Crank Length procedure.

- Reference
4.7.2.4

- **Initial Condition**
 Perform the preamble described in Section 4.2.3.

- **Test Procedure**
 1. A connection is established between the IUT and Lower Tester using the Preamble defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.
 2. IUT writes the Set Crank Length Op Code (0x04) to the Cycling Power Control Point with a Parameter Value set to a valid crank length value (UINT16) in millimeters with a resolution of 1/2 millimeter.
 3. The Lower Tester sends an indication of the Cycling Power Control Point characteristic with the Response Code Op Code (0x20) and a Parameter representing Request Op Code (0x04) followed by the Response Code for ‘success’ (0x01).
 4. The IUT sends ATT_Handle_Value_Confirmation to the Lower Tester.

- **Expected Outcome**
 - **Pass verdict**
 The crank length value is updated with the correct value.
 The IUT receives the Request Op Code ‘success’.

4.6.4 **CPP/COL/SPP/BV-04-I [Request Crank Length]**

- **Test Purpose**
 Verify that the Collector IUT can perform the Request Crank Length procedure.

- **Reference**
 [3] 4.7.2.5

- **Initial Condition**
 Perform the preamble described in Section 4.2.3.

- **Test Procedure**
 1. A connection is established between the IUT and Lower Tester using the Preamble defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.
 2. IUT writes the Request Crank Length Op Code (0x05) to the Cycling Power Control Point with no Parameter.
 3. The Lower Tester sends an indication of the Cycling Power Control Point characteristic with the Response Code Op Code (0x20) and a Parameter representing Request Op Code (0x05), the Response Code for ‘success’ (0x01) followed by the value of the crank length (UINT16) in millimeters with a resolution of 1/2 millimeter.
 4. The IUT sends ATT_Handle_Value_Confirmation to the Lower Tester.

- **Expected Outcome**
Pass verdict

The IUT receives valid crank length value.

4.6.5 CPP/COL/SPP/BV-05-I [Set Chain Length]

- **Test Purpose**

 Verify that the Collector IUT can perform the Set Chain Length procedure.

- **Reference**

 [3] 4.7.2.6

- **Initial Condition**

 Perform the preamble described in Section 4.2.3.

- **Test Procedure**

 1. A connection is established between the IUT and Lower Tester using the Preamble defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.

 2. IUT writes the Set Chain Length Op Code (0x06) to the Cycling Power Control Point with a Parameter Value set to a valid chain length value (UINT16) in millimeters with a resolution of 1 millimeter.

 3. The Lower Tester sends an indication of the Cycling Power Control Point characteristic with the Response Code Op Code (0x20) and a Parameter representing Request Op Code (0x06) followed by the Response Code for ‘success’ (0x01).

 4. The IUT sends ATT_Handle_Value_Confirmation to the Lower Tester.

- **Expected Outcome**

 Pass verdict

 The chain length value is updated with the correct value.

 The IUT receives the Request Op Code ‘success’.

4.6.6 CPP/COL/SPP/BV-06-I [Request Chain Length]

- **Test Purpose**

 Verify that the Collector IUT can perform the Request Chain Length procedure.

- **Reference**

 [3] 4.7.2.7

- **Initial Condition**

 Perform the preamble described in Section 4.2.3.

- **Test Procedure**

 1. A connection is established between the IUT and Lower Tester using the Preamble defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.
2. IUT writes the Request Chain Length Op Code (0x07) to the Cycling Power Control Point with no Parameter.

3. The Lower Tester sends an indication of the Cycling Power Control Point characteristic with the Response Code Op Code (0x20) and a Parameter representing the Request Op Code (0x07), the Response Code for 'success' (0x01) followed by the value of the chain length (UINT16) in millimeters with a resolution of 1 millimeter.

4. The IUT sends ATT_Handle_Value_Confirmation to the Lower Tester.

 • Expected Outcome
 Pass verdict

 The IUT receives valid chain length value.

4.6.7 CPP/COL/SPP/BV-07-I [Set Chain Weight]

 • Test Purpose
 Verify that the Collector IUT can perform the Set Chain Weight procedure.

 • Reference
 [3] 4.7.2.8

 • Initial Condition
 Perform the preamble described in Section 4.2.3.

 • Test Procedure
 1. A connection is established between the IUT and Lower Tester using the Preamble defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.
 2. IUT writes the Set Chain Weight Op Code (0x08) to the Cycling Power Control Point with a Parameter Value set to a valid chain weight value (UINT16) in grams with a resolution of one gram.
 3. The Lower Tester sends an indication of the Cycling Power Control Point characteristic with the Response Code Op Code (0x20) and a Parameter representing Request Op Code (0x08) followed by the Response Code for ‘success’ (0x01).
 4. The IUT sends ATT_Handle_Value_Confirmation to the Lower Tester.

 • Expected Outcome
 Pass verdict

 The chain weight value is updated with the correct value.

 The IUT receives the Request Op Code 'success'.

4.6.8 CPP/COL/SPP/BV-08-I [Request Chain Weight]

 • Test Purpose
 Verify that the Collector IUT can perform the Request Chain Weight procedure.

 • Reference
4.7.2.9

- **Initial Condition**
 Perform the preamble described in Section 4.2.3.

- **Test Procedure**
 1. A connection is established between the IUT and Lower Tester using the Preamble defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.
 2. IUT writes the Request Chain Weight Op Code (0x09) to the Cycling Power Control Point with no Parameter.
 3. The Lower Tester sends an indication of the Cycling Power Control Point characteristic with the Response Code Op Code (0x20) and a Parameter representing the Request Op Code (0x09), the Response Code for ‘success’ (0x01) followed by the value of the chain weight (UINT16) in grams with a resolution of one gram.
 4. The IUT sends ATT_Handle_Value_Confirmation to the Lower Tester.

- **Expected Outcome**
 Pass verdict

 The IUT receives valid chain weight value.

4.6.9 CPP/COL/SPP/BV-09-I [Set Span Length]

- **Test Purpose**
 Verify that the Collector IUT can perform the Set Span Length procedure.

- **Reference**
 [3] 4.7.2.10

- **Initial Condition**
 Perform the preamble described in Section 4.2.3.

- **Test Procedure**
 1. A connection is established between the IUT and Lower Tester using the Preamble defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.
 2. IUT writes the Set Span Length Op Code (0x0A) to the Cycling Power Control Point with a Parameter Value set to a valid span length value (UINT16) in millimeters with a resolution of 1 millimeter.
 3. The Lower Tester sends an indication of the Cycling Power Control Point characteristic with the Response Code Op Code (0x20) and a Parameter representing Request Op Code (0x0A) followed by the Response Code for ‘success’ (0x01).
 4. The IUT sends ATT_Handle_Value_Confirmation to the Lower Tester.

- **Expected Outcome**
 Pass verdict
The span length value is updated with the correct value.

The IUT receives the Request Op Code ‘success’.

4.6.10 CPP/COL/SPP/BV-10-I [Request Span Length]

• Test Purpose
Verify that the Collector IUT can perform the Request Span Length procedure.

• Reference
[3] 4.7.2.11

• Initial Condition
Perform the preamble described in Section 4.2.3.

• Test Procedure
1. A connection is established between the IUT and Lower Tester using the Preamble defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.
2. IUT writes the Request Span Length Op Code (0x0B) to the Cycling Power Control Point with no Parameter.
3. The Lower Tester sends an indication of the Cycling Power Control Point characteristic with the Response Code Op Code (0x20) and a Parameter representing the Request Op Code (0x0B), the Response Code for ‘success’ (0x01) followed by the value of the span length (UINT16) in millimeters with a resolution of 1 millimeter.
4. The IUT sends ATT_Handle_Value_Confirmation to the Lower Tester.

• Expected Outcome
Pass verdict
The IUT receives valid span length value.

4.6.11 CPP/COL/SPP/BV-11-I [Request Factory Calibration Date]

• Test Purpose
Verify that the Collector IUT can perform the Request Factory Calibration Date procedure.

• Reference
[3] 4.7.2.15

• Initial Condition
Perform the preamble described in Section 4.2.3.

• Test Procedure
1. A connection is established between the IUT and Lower Tester using the Preamble defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.
2. IUT writes the Request Factory Calibration Date Op Code (0x0F) to the Cycling Power Control Point with no Parameter.
3. The Lower Tester sends an indication of the Cycling Power Control Point characteristic with the Response Code Op Code (0x20) and a Parameter representing the Request Op Code (0x0F), the Response Code for 'success' (0x01) followed by the factory calibration date (see Date Time characteristic format in [11]).

4. The IUT sends ATT_Handle_Value_Confirmation to the Lower Tester.

• Expected Outcome
 Pass verdict

 The IUT receives valid the factory calibration date.

4.6.12 CPP/COL/SPP/BV-12-I [Request Sampling Rate]

• Test Purpose
 Verify that the Collector IUT can perform the Request Sampling Rate procedure.

• Reference
 [3] 4.7.2.15

• Initial Condition
 Perform the preamble described in Section 4.2.3.

• Test Procedure
 1. A connection is established between the IUT and Lower Tester using the Preamble defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.
 2. IUT writes the Request Sampling Rate Op Code (0x0E) to the Cycling Power Control Point with no Parameter.
 3. The Lower Tester sends an indication of the Cycling Power Control Point characteristic with the Response Code Op Code (0x20) and a Parameter representing the Request Op Code (0x0E), the Response Code for ‘success’ (0x01) followed by the value of the sampling rate (UINT8) in Hertz with a resolution of 1 Hertz.
 4. The IUT sends ATT_Handle_Value_Confirmation to the Lower Tester.

• Expected Outcome
 Pass verdict

 The IUT receives valid sampling rate.

4.7 Service Procedure – Offset Compensation

4.7.1 CPP/COL/SPO/BV-01-I [Start Offset Compensation – Force Based CP Sensor]

• Test Purpose
 Verify that the Collector IUT can perform the Start Offset Compensation procedure and interpret correctly the Response Parameter from a Force-based CP Sensor.

• Reference
[3] 4.7.2.13

• Initial Condition
 Perform the preamble described in Section 4.2.3.

• Test Procedure
 1. A connection is established between the IUT and Lower Tester using the Preamble defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.
 2. IUT writes the Start Offset Compensation Op Code (0x0C) to the Cycling Power Control Point with no Parameter.
 3. The Lower Tester sends an indication of the Cycling Power Control Point characteristic with the Response Code Op Code (0x20) and a Parameter representing the Request Op Code (0x0C), the Response Code for ‘success’ (0x01) followed by the Response Parameter representing the value of the offset before the offset is compensated (SINT16) in Newton meters with a resolution of 1/32 Newton meter.
 4. The IUT sends ATT_Handle_Value_Confirmation to the Lower Tester.

• Expected Outcome
 Pass verdict

 The IUT receives valid offset value and interprets the unit correctly, based on the Sensor Measurement Context bit of the Cycling Power Measurement context.

4.7.2 CPP/COL/SPO/BV-02-I [Start Offset Compensation – Torque Based CP Sensor]

• Test Purpose
 Verify that the Collector IUT can perform the Start Offset Compensation procedure and interpret correctly the Response Parameter from a Torque-based CP Sensor.

• Reference
 [3] 4.7.2.13

• Initial Condition
 Perform the preamble described in Section 4.2.3.

• Test Procedure
 1. A connection is established between the IUT and Lower Tester using the Preamble defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.
 2. IUT writes the Start Offset Compensation Op Code (0x0C) to the Cycling Power Control Point with no Parameter.
 3. The Lower Tester sends an indication of the Cycling Power Control Point characteristic with the Response Code Op Code (0x20) and a Parameter representing the Request Op Code (0x0C), the Response Code for ‘success’ (0x01) followed by the Response Parameter representing the value of the offset before the offset is compensated (SINT16) in Newton meters with a resolution of 1/32 Newton meter.
4. The IUT sends ATT_Handle_Value_Confirmation to the Lower Tester.

- Expected Outcome
 Pass verdict

The IUT receives valid offset value and interprets the unit correctly, based on the Sensor Measurement Context bit of the Cycling Power Measurement context.

4.8 Service Procedure – Mask Characteristic Content

4.8.1 CPP/COL/SPM/BV-01-I [Mask Cycling Power Measurement Characteristic Content]

- Test Purpose
 Verify that the Collector IUT can perform the Mask Cycling Power Measurement Characteristic Content procedure.

- Reference
 [3] 4.7.2.13

- Initial Condition
 Perform the preamble described in Section 4.2.3.

- Test Procedure
 1. A connection is established between the IUT and Lower Tester using the Preamble defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.
 2. IUT writes the Mask Cycling Power Measurement Characteristic Content Op Code (0x0D) to the Cycling Power Control Point with a Parameter Value set to a valid mask value (UINT16).
 3. The Lower Tester sends an indication of the Cycling Power Control Point characteristic with the Response Code Op Code (0x20) and a Parameter representing Request Op Code (0x0D) followed by the Response Code for ‘success’ (0x01).
 4. The IUT sends ATT_Handle_Value_Confirmation to the Lower Tester.
 5. The Lower Tester sends one or more ATT_Handle_Value_Notifications of the Cycling Power Measurement characteristic with the masked fields not present.

- Expected Outcome
 Pass verdict

The mask value is updated with the correct value.

The IUT receives the Request Op Code ‘success’.

4.9 Service Procedure – Enhanced Offset Compensation

4.9.1 CPP/COL/SPO/BV-03-I [Start Enhanced Offset Compensation – Force Based CP Sensor]

- Test Purpose
Verify that the Collector IUT can perform the Start Enhanced Offset Compensation procedure and interpret correctly the Response Parameter from a Force-based CP Sensor.

- **Reference**

 [3] 4.7.2.16

- **Initial Condition**

 Perform the preamble described in Section 4.2.3.

 The IUT has read the Cycling Power Feature characteristic showing that the CP Sensor is Force Based.

- **Test Procedure**

 1. A connection is established between the IUT and Lower Tester using the Preamble defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.

 2. IUT writes the Start Enhanced Offset Compensation Op Code (0x10) to the Cycling Power Control Point with no Parameter.

 3. The Lower Tester sends an indication of the Cycling Power Control Point characteristic with the Response Code Op Code (0x20) and a Parameter representing the Request Op Code (0x10), the Response Code for ‘success’ (0x01) followed by the Response Parameter representing the value of the offset before the offset is compensated (SINT16) in Newtons with a resolution of 1 Newton followed by a UINT16 value representing the manufacturer Company ID as given in the SIG assigned numbers (e.g. 0x003F for Bluetooth SIG), a UINT8 representing the number of octets (e.g. 0x03) of manufacturer specific data (e.g. Analog to Digital Conversion data), and the corresponding manufacturer specific data in the Response Parameter (e.g. 0x123456).

 4. The IUT sends ATT_Handle_Value_Confirmation to the Lower Tester.

- **Expected Outcome**

 Pass verdict

 The IUT receives valid offset value and interprets the unit correctly, based on the Sensor Measurement Context bit of the Cycling Power Measurement context. The IUT may ignore the manufacturer specific data included in the Response Parameter.

4.9.2 CPP/COL/SPO/BV-04-I [Start Enhanced Offset Compensation – Torque Based CP Sensor]

- **Test Purpose**

 Verify that the Collector IUT can perform the Start Enhanced Offset Compensation procedure and interpret correctly the Response Parameter from a Torque-based CP Sensor.

- **Reference**

 [3] 4.7.2.16

- **Initial Condition**

 Perform the preamble described in Section 4.2.3.
The IUT has read the Cycling Power Feature characteristic showing that the CP Sensor is Torque Based.

• Test Procedure
 1. A connection is established between the IUT and Lower Tester using the Preamble defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.
 2. IUT writes the Start Enhanced Offset Compensation Op Code (0x10) to the Cycling Power Control Point with no Parameter.
 3. The Lower Tester sends an indication of the Cycling Power Control Point characteristic with the Response Code Op Code (0x20) and a Parameter representing the Request Op Code (0x10), the Response Code for ‘success’ (0x01) followed by the Response Parameter representing the value of the offset before the offset is compensated (SINT16) in Newton meters with a resolution of 1/32 Newton meter followed by a UINT16 value representing the manufacturer Company ID as given in the SIG assigned numbers (e.g. 0x003F for Bluetooth SIG), a UINT8 representing the number of octets (e.g. 0x03) of manufacturer specific data (e.g. Analog to Digital Conversion data), and the corresponding manufacturer specific data in the Response Parameter (e.g. 0x123456).
 4. The IUT sends ATT_Handle_Value_Confirmation to the Lower Tester.

• Expected Outcome
 Pass verdict

 The IUT receives valid offset value and interprets the unit correctly, based on the Sensor Measurement Context bit of the Cycling Power Measurement context. The IUT may ignore the manufacturer specific data included in the Response Parameter.

4.9.3 CPP/COL/SPO/BI-01-I [Start Enhanced Offset Compensation – Incorrect Calibration Position]

• Test Purpose
 Verify that the Collector IUT can perform the Start Enhanced Offset Compensation procedure and interpret correctly the Response Parameter when the CP Sensor is in an incorrect calibration position.

• Reference
 [3] 4.7.2.16

• Initial Condition
 Perform the preamble described in Section 4.2.3.

• Test Procedure
 1. A connection is established between the IUT and Lower Tester using the Preamble defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.
 2. IUT writes the Start Enhanced Offset Compensation Op Code (0x10) to the Cycling Power Control Point with no Parameter.
 3. The Lower Tester sends an indication of the Cycling Power Control Point characteristic with the Response Code Op Code (0x20) and a Parameter representing the Request Op Code (0x10), the
Response Code for 'operation failed' (0x04) followed by the Response Parameter value set to Incorrect Calibration Position (0x01).

4. The IUT sends ATT_Handle_Value_Confirmation to the Lower Tester.

- Expected Outcome
 Pass verdict

 The IUT interprets the Response Code and the Response Parameter correctly.

4.9.4 CPP/COL/SPO/BI-02-I [Start Enhanced Offset Compensation – Manufacturer Specific Error]

- Test Purpose
 Verify that the Collector IUT can perform the Start Enhanced Offset Compensation procedure and interpret correctly the Response Parameter when the CP Sensor returns a Manufacturer Specific Error.

- Reference
 [3] 4.7.2.16

- Initial Condition
 Perform the preamble described in Section 4.2.3.

- Test Procedure
 1. A connection is established between the IUT and Lower Tester using the Preamble defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.
 2. IUT writes the Start Enhanced Offset Compensation Op Code (0x10) to the Cycling Power Control Point with no Parameter.
 3. The Lower Tester sends an indication of the Cycling Power Control Point characteristic with the Response Code Op Code (0x20) and a Parameter representing the Request Op Code (0x10), the Response Code for 'operation failed' (0x04) followed by the Response Parameter value set to Manufacturer Specific Error (0xFF) followed by a UINT16 value representing the manufacturer Company ID as given in the SIG assigned numbers (e.g. 0x003F for Bluetooth SIG), a UINT8 representing the number of octets (e.g. 0x03) of manufacturer specific data (e.g. Analog to Digital Conversion data), and the corresponding manufacturer specific data in the Response Parameter (e.g. 0x123456).
 4. The IUT sends ATT_Handle_Value_Confirmation to the Lower Tester.

- Expected Outcome
 Pass verdict

 The IUT interprets the Response Code and the Response Parameter correctly. The IUT may ignore the manufacturer specific data included in the Response Parameter.

4.10 Service Procedures – General Error Handling

This test group contains test cases to verify compliant operation when an error is caused by the Server side.
4.10.1 CPP/COL/SPE/BI-01-C [Unsupported Op Code]

- **Test Purpose**
 Verify that the Collector IUT behaves appropriately when it receives an ‘Op Code not supported’ Cycling Power Control Point Response Code.

- **Reference**
 [3] 4.7.3

- **Initial Condition**
 Perform the preamble described in Section 4.2.3.

- **Test Procedure**
 1. A connection is established between the IUT and Lower Tester using the Preamble defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.
 3. The Lower Tester sends an indication of the Cycling Power Control Point characteristic with the Response Code Op Code (0x20) and a Parameter representing Request Op Code followed by the Response Code Value for ‘Op Code not supported’ (0x02) (i.e. the Lower Tester simulates an unsupported Op Code).
 4. The IUT considers the procedure to have failed.

- **Expected Outcome**
 Pass verdict
 The IUT returns to stable state and can process commands normally.

- **Notes**
 The test case is to verify the IUT’s capability to handle an Op Code not supported response by the Sensor. This Sensor response may be provoked by the IUT writing an Op Code that is not supported by the responding compliant Sensor, or where the Sensor response to the IUT may be yielded by a test system that emulates that it does not support an Op Code.

4.10.2 CPP/COL/SPE/BI-02-C [Invalid Parameter]

- **Test Purpose**
 Verify that the Collector IUT behaves appropriately when it receives an ‘Invalid Parameter’ Cycling Power Control Point Response Code.

- **Reference**
 [3] 4.7.3

- **Initial Condition**
 Perform the preamble described in Section 4.2.3.

- **Test Procedure**
1. A connection is established between the IUT and Lower Tester using the Preamble defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.

2. IUT writes the Update Sensor Location Op Code to the Cycling Power Control Point using any Sensor Location value.

3. The Lower Tester sends an indication of the Cycling Power Control Point characteristic with the Response Code Op Code (0x20) and a Parameter representing Request Op Code (0x02) followed by the Response Code Value for 'Invalid Parameter' (0x03) (i.e. the Lower Tester simulates an unsupported value).

 • Expected Outcome
 Pass verdict

 The IUT returns to stable state and can process commands normally.

4.10.3 CPP/COL/SPE/BI-03-C [Operation Failed]

 • Test Purpose
 Verify that the Collector IUT behaves appropriately when it receives an ‘Operation Failed’ Cycling Power Control Point Response Code.

 • Reference
 [3] 4.7.3

 • Initial Condition
 Perform the preamble described in Section 4.2.3.

 • Test Procedure
 1. A connection is established between the IUT and Lower Tester using the Preamble defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.

 3. The Lower Tester sends an indication of the Cycling Power Control Point characteristic with the Response Code Op Code (0x20) and a Parameter representing Request Op Code followed by the Response Code Value for ‘Operation Failed’ (0x04) (i.e. the Lower Tester simulates a failed operation).

 • Expected Outcome
 Pass verdict

 The IUT returns to stable state and can process commands normally.

4.10.4 CPP/COL/SPE/BI-04-C [Cycling Power Control Point Procedure Timeout]

 • Test Purpose
 Verify that if the Collector IUT does not receive a response to a Cycling Power Control Point Op Code, it will time out after the Attribute Transaction Timeout.

 • Reference
[3] 4.7.4

• Initial Condition
 Perform the preamble described in Section 4.2.3.

• Test Procedure
 1. A connection is established between the IUT and Lower Tester using the Preamble defined in Section 4.2.4 if using an LE transport or 4.2.6 if using a BR/EDR transport.
 2. IUT writes any of the supported Op Codes to the Cycling Power Control Point using an appropriate Parameter for the Op Code.
 3. The Lower Tester does not send an indication of the Cycling Power Control Point characteristic for at least longer than the Attribute Protocol Timeout.
 4. After the specified timeout the IUT sends a notification of Attribute Transaction Timeout to the Upper Tester and the IUT considers the procedure to have failed.

• Expected Outcome
 Pass verdict

 The IUT returns to a stable state and can process commands normally.
5 Test Case Mapping

The Test Case Mapping Table (TCMT) maps test cases to specific capabilities in the ICS. Profiles, protocols, and services may define multiple roles, and it is possible that a product may implement more than one role. The product shall be tested in all roles for which support is declared in the ICS document.

The columns for the TCMT are defined as follows:

Item: contains a y/x reference, where y corresponds to the table number and x corresponds to the feature number as defined in the ICS Proforma for Cycling Power Profile [4]. If the item is defined with Protocol, Profile or Service abbreviation before y/x, the table and feature number referenced are defined in the abbreviated ICS proforma document.

Feature: recommended to be the primary feature defined in the ICS being tested or may be the test case name.

Test Case(s): the applicable test case identifiers required for Bluetooth Qualification if the corresponding y/x references defined in the Item column are supported.

Test Case Applicable: may be used to note if a test is required based on the supported features.

For purpose and structure of the ICS/IXIT proforma and instructions for completing the ICS/IXIT proforma refer to the Bluetooth ICS and IXIT proforma document.

<table>
<thead>
<tr>
<th>Item</th>
<th>Feature</th>
<th>Test case(s)</th>
<th>Test Case Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPP 2/2 AND CPP 7/1</td>
<td>Discover Cycling Power Service – LE</td>
<td>CPP/COL/CPD/BV-01-I</td>
<td></td>
</tr>
<tr>
<td>CPP 2/2 AND CPP 8/1</td>
<td>Discover Device Information Service - LE</td>
<td>CPP/COL/CPD/BV-02-I</td>
<td></td>
</tr>
<tr>
<td>CPP 2/2 AND CPP 9/1</td>
<td>Discover Battery Service – LE</td>
<td>CPP/COL/CPD/BV-03-I</td>
<td></td>
</tr>
<tr>
<td>CPP 2/1</td>
<td>Discover Services – BR/EDR</td>
<td>CPP/COL/CPD/BV-04-I</td>
<td></td>
</tr>
<tr>
<td>(CPP 2/2 AND NOT CPP 2/1) AND GATT 2/1 AND GAP 0/3</td>
<td>Discover Cycling Power Service – Not Discoverable over BR/EDR</td>
<td>CPP/SEN/CPD/BV-05-I</td>
<td></td>
</tr>
<tr>
<td>CPP 7/2</td>
<td>Discover Cycling Power Feature Characteristic</td>
<td>CPP/COL/CPD/BV-06-I</td>
<td></td>
</tr>
<tr>
<td>CPP 7/3</td>
<td>Discover Cycling Power Measurement Characteristic</td>
<td>CPP/COL/CPD/BV-07-I</td>
<td></td>
</tr>
<tr>
<td>CPP 7/4</td>
<td>Discover Cycling Power Measurement Characteristic – Client Characteristic Configuration Descriptor</td>
<td>CPP/COL/CPD/BV-08-I</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Feature</td>
<td>Test case(s)</td>
<td>Test Case Applicable</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>CPP 7/5</td>
<td>Discover Cycling Power Measurement Characteristic – Server Characteristic Configuration Descriptor</td>
<td>CPP/COL/CPD/BV-09-I</td>
<td></td>
</tr>
<tr>
<td>CPP 7/6</td>
<td>Discover Sensor Location Characteristic</td>
<td>CPP/COL/CPD/BV-10-I</td>
<td></td>
</tr>
<tr>
<td>CPP 7/7</td>
<td>Discover Cycling Power Control Point Characteristic</td>
<td>CPP/COL/CPD/BV-11-I</td>
<td></td>
</tr>
<tr>
<td>CPP 7/8</td>
<td>Discover Cycling Power Control Point Characteristic - Client Characteristic Configuration Descriptor</td>
<td>CPP/COL/CPD/BV-12-I</td>
<td></td>
</tr>
<tr>
<td>CPP 7/9 AND CPP 7/10</td>
<td>Discover Cycling Power Vector Characteristic</td>
<td>CPP/COL/CPD/BV-13-I</td>
<td></td>
</tr>
<tr>
<td>CPP 7/10</td>
<td>Discover Cycling Power Vector Characteristic – Client Characteristic Configuration Descriptor</td>
<td>CPP/COL/CPD/BV-14-I</td>
<td></td>
</tr>
<tr>
<td>CPP 8/1</td>
<td>Discover DIS Characteristics</td>
<td>CPP/COL/CPD/BV-15-I</td>
<td></td>
</tr>
<tr>
<td>CPP 8/1</td>
<td>Read DIS Characteristics</td>
<td>CPP/COL/CPD/BV-16-I</td>
<td></td>
</tr>
<tr>
<td>CPP 9/1</td>
<td>Discover Battery Service Characteristics</td>
<td>CPP/COL/CPD/BV-17-I</td>
<td></td>
</tr>
<tr>
<td>CPP 9/1</td>
<td>Read Battery Level Characteristic</td>
<td>CPP/COL/CPD/BV-18-I</td>
<td></td>
</tr>
<tr>
<td>CPP 3/2</td>
<td>Cycling Power Service UUID in AD in GAP Discoverable Mode</td>
<td>CPP/SEN/CPF/BV-01-I</td>
<td></td>
</tr>
<tr>
<td>CPP 3/3</td>
<td>Local Name in AD or Scan Response</td>
<td>CPP/SEN/CPF/BV-02-I</td>
<td></td>
</tr>
<tr>
<td>CPP 3/4</td>
<td>Appearance in AD or Scan Response</td>
<td>CPP/SEN/CPF/BV-03-I</td>
<td></td>
</tr>
<tr>
<td>CPP 11/1</td>
<td>Read Cycling Power Feature characteristic</td>
<td>CPP/COL/CPF/BV-04-I CPP/COL/CPF/BI-01-I</td>
<td></td>
</tr>
<tr>
<td>CPP 11/2</td>
<td>Configure Cycling Power Measurement characteristic for notifications</td>
<td>CPP/COL/CPF/BV-05-I</td>
<td></td>
</tr>
<tr>
<td>CPP 11/3</td>
<td>Receive Cycling Power Measurement characteristic notifications</td>
<td>CPP/COL/CPF/BV-06-I CPP/COL/CPF/BI-02-I CPP/COL/CPF/BI-03-I</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Feature</td>
<td>Test case(s)</td>
<td>Test Case Applicable</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>CPP 10/10</td>
<td>Calculates Accumulated Torque</td>
<td>CPP/COL/CPF/BV-07-I</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CPP/COL/CPF/BV-15-I</td>
<td></td>
</tr>
<tr>
<td>CPP 10/11</td>
<td>Calculates Instantaneous Speed</td>
<td>CPP/COL/CPF/BV-08-I</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CPP/COL/CPF/BV-14-I</td>
<td></td>
</tr>
<tr>
<td>CPP 10/11 AND CPP 13/3</td>
<td>Calculates Instantaneous Speed</td>
<td>CPP/COL/CPF/BV-12-I</td>
<td></td>
</tr>
<tr>
<td>CPP 10/12</td>
<td>Calculates Instantaneous Cadence</td>
<td>CPP/COL/CPF/BV-09-I</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CPP/COL/CPF/BV-10-I</td>
<td></td>
</tr>
<tr>
<td>CPP 10/12 AND CPP 13/3</td>
<td>Calculates Instantaneous Speed</td>
<td>CPP/COL/CPF/BV-13-I</td>
<td></td>
</tr>
<tr>
<td>CPP 10/13</td>
<td>Calculates Accumulated Energy</td>
<td>CPP/COL/CPF/BV-11-I</td>
<td></td>
</tr>
<tr>
<td>CPP 0/1 AND CPP 10/3 AND CPP 11/3</td>
<td>Receive Cycling Power Measurement characteristic notifications from a Distributed Power System</td>
<td>CPP/COL/CPF/BV-16-I</td>
<td></td>
</tr>
<tr>
<td>CPP 10/4</td>
<td>Calculates Total Instantaneous Power from a Distributed Power System</td>
<td>CPP/COL/CPF/BV-17-I</td>
<td></td>
</tr>
<tr>
<td>CPP 10/5</td>
<td>Calculates Power Balance from a Distributed Power System</td>
<td>CPP/COL/CPF/BV-18-I</td>
<td></td>
</tr>
<tr>
<td>CPP 11/5</td>
<td>Read Sensor Location characteristic</td>
<td>CPP/COL/CPF/BV-19-I</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CPP/COL/CPF/BI-04-I</td>
<td></td>
</tr>
<tr>
<td>CPP 11/25</td>
<td>Configure Cycling Power Vector for Notification</td>
<td>CPP/COL/CPF/BV-20-I</td>
<td></td>
</tr>
<tr>
<td>CPP 11/26</td>
<td>Receive Cycling Power Vector Notifications</td>
<td>CPP/COL/CPF/BV-21-I</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CPP/COL/CPF/BI-05-I</td>
<td></td>
</tr>
<tr>
<td>CPP 10/12 AND CPP 10/22</td>
<td>Cycling Power Vector – Calculates Instantaneous Cadence</td>
<td>CPP/COL/CPF/BV-22-I</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CPP/COL/CPF/BV-23-I</td>
<td></td>
</tr>
<tr>
<td>CPP 2/2 AND CPP 14/2 AND CPP 11/27</td>
<td>Verify Bond Status on Reconnection – LE</td>
<td>CPP/COL/CPF/BV-24-I</td>
<td></td>
</tr>
<tr>
<td>CPP 2/1 AND CPP 4/1 AND CPP 11/27</td>
<td>Verify Bond Status on Reconnection – BR/EDR</td>
<td>CPP/COL/CPF/BV-25-I</td>
<td></td>
</tr>
<tr>
<td>CPP 11/4</td>
<td>Configure Cycling Power Measurement for broadcast</td>
<td>CPP/COL/CPF/BV-26-I</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Feature</td>
<td>Test case(s)</td>
<td>Test Case Applicable</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>CPP 15/1 AND CPP 15/5</td>
<td>Cycling Power Measurement Broadcast – Calculates Accumulated Torque</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPP 15/1 AND CPP 15/6</td>
<td>Cycling Power Measurement Broadcast – Calculates Instantaneous Speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPP 15/1 AND CPP 15/7</td>
<td>Cycling Power Measurement Broadcast - Calculates Instantaneous Cadence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPP 15/1 AND CPP 15/8</td>
<td>Cycling Power Measurement Broadcast – Calculates Accumulated Energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPP 15/2</td>
<td>Receive Cycling Power Measurement Broadcast from a Distributed Power System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPP 15/2 AND CPP 15/3</td>
<td>Calculates Total Instantaneous Power from a Distributed Power System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPP 15/2 AND CPP 15/4</td>
<td>Calculates Power Balance from a Distributed Power System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPP 10/6</td>
<td>Set Cumulative Value – Set to zero</td>
<td>CPP/COL/SPS/BV-01-I</td>
<td></td>
</tr>
<tr>
<td>CPP 10/7</td>
<td>Set Cumulative Value – Set to non-zero</td>
<td>CPP/COL/SPS/BV-02-I</td>
<td></td>
</tr>
<tr>
<td>CPP 10/8</td>
<td>Update Sensor Location</td>
<td>CPP/COL/SPP/BV-01-I</td>
<td></td>
</tr>
<tr>
<td>CPP 10/9</td>
<td>Request Supported Sensor Locations</td>
<td>CPP/COL/SPP/BV-02-I</td>
<td></td>
</tr>
<tr>
<td>CPP 10/14</td>
<td>Set Crank Length</td>
<td>CPP/COL/SPP/BV-03-I</td>
<td></td>
</tr>
<tr>
<td>CPP 10/15 AND CPP 11/13</td>
<td>Request Crank Length</td>
<td>CPP/COL/SPP/BV-04-I</td>
<td></td>
</tr>
<tr>
<td>CPP 10/16</td>
<td>Set Chain Length</td>
<td>CPP/COL/SPP/BV-05-I</td>
<td></td>
</tr>
<tr>
<td>CPP 10/17 AND CPP 11/15</td>
<td>Request Chain Length</td>
<td>CPP/COL/SPP/BV-06-I</td>
<td></td>
</tr>
<tr>
<td>CPP 10/18</td>
<td>Set Chain Weight</td>
<td>CPP/COL/SPP/BV-07-I</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Feature</td>
<td>Test case(s)</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>CPP 10/19 AND CPP 11/17</td>
<td>Request Chain Weight</td>
<td>CPP/COL/SPP/BV-08-I</td>
<td></td>
</tr>
<tr>
<td>CPP 10/20</td>
<td>Set Span Length</td>
<td>CPP/COL/SPP/BV-09-I</td>
<td></td>
</tr>
<tr>
<td>CPP 10/21 AND CPP 11/19</td>
<td>Request Span Length</td>
<td>CPP/COL/SPP/BV-10-I</td>
<td></td>
</tr>
<tr>
<td>CPP 10/26 AND CPP 11/22</td>
<td>Request Factory Calibration Date</td>
<td>CPP/COL/SPP/BV-11-I</td>
<td></td>
</tr>
<tr>
<td>CPP 10/25 AND CPP 11/22</td>
<td>Request Sampling Rate</td>
<td>CPP/COL/SPP/BV-12-I</td>
<td></td>
</tr>
<tr>
<td>CPP 10/23 AND CPP 11/20</td>
<td>Start Offset Compensation</td>
<td>CPP/COL/SPO/BV-01-I, CPP/COL/SPO/BV-02-I</td>
<td></td>
</tr>
<tr>
<td>CPP 10/24 AND CPP 11/21</td>
<td>Mask Characteristic Content</td>
<td>CPP/COL/SPM/BV-01-I</td>
<td></td>
</tr>
<tr>
<td>CPP 11/6 AND CPP 11/7</td>
<td>Write to SC Control Point characteristic and Receive SC Control Point characteristic indications</td>
<td>CPP/COL/SPE/BV-01-C, CPP/COL/SPE/BV-02-C, CPP/COL/SPE/BV-03-C</td>
<td></td>
</tr>
<tr>
<td>CPP 11/24</td>
<td>SC Control Point Characteristic – Procedure Time Out</td>
<td>CPP/COL/SPE/BV-04-C</td>
<td></td>
</tr>
<tr>
<td>CPP 0/2 AND CPP 10/3</td>
<td>Receive Cycling Power Measurement characteristic notifications from a Distributed Power System</td>
<td>CPP/COL/CPF/BV-36-I, CPP/COL/CPF/BV-37-I, CPP/COL/CPF/BV-38-I</td>
<td></td>
</tr>
<tr>
<td>CPP 0/2 AND CPP 10/3 AND CPP 10/4</td>
<td>Receive Cycling Power Measurement characteristic notifications from 2 Legacy sensors</td>
<td>CPP/COL/CPF/BV-41-I</td>
<td></td>
</tr>
<tr>
<td>CPP 0/2 AND CPP 10/3 AND CPP 10/4</td>
<td>Calculates Total Instantaneous Power from 2 sensors which can be used in a distributed power system</td>
<td>CPP/COL/CPF/BV-39-I</td>
<td></td>
</tr>
<tr>
<td>CPP 0/2 AND CPP 10/3 AND CPP 10/5</td>
<td>Calculates Power Balance from 2 sensors which can be used in a distributed power system</td>
<td>CPP/COL/CPF/BV-40-I</td>
<td></td>
</tr>
<tr>
<td>CPP 11/28</td>
<td>Enhanced Offset Compensation</td>
<td>CPP/COL/SPO/BV-03-I, CPP/COL/SPO/BV-04-I, CPP/COL/SPO/BV-01-I, CPP/COL/SPO/BV-02-I</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.1: Test Case Mapping