ADVANCED AUDIO DISTRIBUTION PROFILE SPECIFICATION

Abstract

This profile defines the requirements for Bluetooth™ devices necessary for support of the high quality audio distribution. The requirements are expressed in terms of end-user services, and by defining the features and procedures that are required for interoperability between Bluetooth devices in the Audio Distribution usage model.
Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>April 2001</td>
<td>Release to Associates</td>
</tr>
<tr>
<td>0.7</td>
<td>June 2001</td>
<td>Release to Associates</td>
</tr>
<tr>
<td>0.9</td>
<td>September 2001</td>
<td>Release to Associates and Early Adopters</td>
</tr>
<tr>
<td>Voting Draft 0.95</td>
<td>October 2001</td>
<td>Release to Associates and Early Adopters</td>
</tr>
<tr>
<td>0.95b</td>
<td>March 2002</td>
<td>Adopted 0.95</td>
</tr>
<tr>
<td>Voting Draft 1.00</td>
<td>May 2002</td>
<td>Release for Voting Draft</td>
</tr>
<tr>
<td>Voting Draft 1.00 a</td>
<td>June 2002</td>
<td>Release for Voting Draft</td>
</tr>
<tr>
<td>Voting Draft 1.00 b</td>
<td>February 2003</td>
<td>Release for Voting Draft</td>
</tr>
<tr>
<td>Version 1.0</td>
<td>May 2003</td>
<td>Adopted version</td>
</tr>
</tbody>
</table>
Contributors

Morgan Lindqvist Ericsson
Fisseha Mekuria Ericsson
Tsuyoshi Okada Matsushita Electric Industrial
Kalervo Kontola Nokia
Vesa Lunden Nokia
Jurgen Schnitzler Nokia
Shaun Barrett Philips
Christian Bouffioux Philips
Frans de Bont Philips
Rob J. Davies Philips
Emmanuel Mellery Philips
Marc Vauclair Philips
Kenzo Akagiri Sony
Masakazu Hattori Sony
Harumi Kawamura (Owner) Sony
Rudiger Mosig Sony
Yoshiyuki Nezu Sony
Masayuki Nishiguchi Sony
Hiroyasu Noguchi (Co-Owner) Sony
Tomoko Tanaka Sony
Junko Ami Toshiba
Takeshi Saito Toshiba
Yoshiaki Takabatake Toshiba
Yoichi Takebayashi Toshiba
Ichiro Tomoda Toshiba
Junichi Yoshizawa Toshiba
Disclaimer and Copyright Notice

The copyright in these specifications is owned by the Promoter Members of Bluetooth SIG, Inc. (“Bluetooth SIG”). Use of these specifications and any related intellectual property (collectively, the “Specification”), is governed by the Promoters Membership Agreement among the Promoter Members and Bluetooth SIG (the “Promoters Agreement”), certain membership agreements between Bluetooth SIG and its Adopter and Associate Members (the Membership Agreements”) and the Bluetooth Specification Early Adopters Agreements (“1.2 Early Adopters Agreements”) among Early Adopter members of the unincorporated Bluetooth special interest group and the Promoter Members (the “Early Adopters Agreement”). Certain rights and obligations of the Promoter Members under the Early Adopters Agreements have been assigned to Bluetooth SIG by the Promoter Members.

Use of the Specification by anyone who is not a member of Bluetooth SIG or a party to an Early Adopters Agreement (each such person or party, a “Member”), is prohibited. The legal rights and obligations of each Member are governed by their applicable Membership Agreement, Early Adopters Agreement or Promoters Agreement. No license, express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein.

Any use of the Specification not in compliance with the terms of the applicable Membership Agreement, Early Adopters Agreement or Promoters Agreement is prohibited and any such prohibited use may result in termination of the applicable Membership Agreement or Early Adopters Agreement and other liability permitted by the applicable agreement or by applicable law to Bluetooth SIG or any of its members for patent, copyright and/or trademark infringement.

THE SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, SATISFACTORY QUALITY, OR REASONABLE SKILL OR CARE, OR ANY WARRANTY ARISING OUT OF ANY COURSE OF DEALING, USAGE, TRADE PRACTICE, PROPOSAL, SPECIFICATION OR SAMPLE.

Each Member hereby acknowledges that products equipped with the Bluetooth™ technology (“Bluetooth™ Products”) may be subject to various regulatory controls under the laws and regulations of various governments worldwide. Such laws and regulatory controls may govern, among other things, the combination, operation, use, implementation and distribution of Bluetooth™ Products. Examples of such laws and regulatory controls include, but are not limited to, airline regulatory controls, telecommunications regulations, technology transfer controls and health and safety regulations. Each Member is solely responsible for the compliance by their Bluetooth™ Products with any such laws and regulations and for obtaining any and all required authorizations, permits, or licenses for their Bluetooth™ Products related to such regulations within the applicable jurisdictions. Each Member acknowledges that nothing in the Specification provides any information or assistance in connection with securing such compliance, authorizations or licenses. NOTHING IN THE SPECIFICATION CREATES ANY WARRANTIES, EITHER EXPRESS OR IMPLIED, REGARDING SUCH LAWS OR REGULATIONS.

ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHTS OR FOR NONCOMPLIANCE WITH LAWS, RELATING TO USE OF THE SPECIFICATION IS EXPRESSLY DISCLAIMED. BY USE OF THE SPECIFICATION, EACH MEMBER EXPRESSLY WAIVES ANY CLAIM AGAINST BLUETOOTH SIG AND ITS PROMOTER MEMBERS RELATED TO USE OF THE SPECIFICATION.

Bluetooth SIG reserves the right to adopt any changes or alterations to the Specification as it deems necessary or appropriate and to adopt a process for adding new Bluetooth™ profiles after the release of the Specification.

Copyright © 2003, Bluetooth SIG Inc

Release Date: 22 May 2003
Document Terminology

The Bluetooth SIG has adopted Section 13.1 of the IEEE Standards Style Manual, which dictates use of the words ``shall'', ``should'', ``may'', and ``can'' in the development of documentation, as follows:

- The word *shall* is used to indicate mandatory requirements strictly to be followed in order to conform to the standard and from which no deviation is permitted (*shall equals is required to*).

- The use of the word *must* is deprecated and shall not be used when stating mandatory requirements; *must* is used only to describe unavoidable situations.

- The use of the word *will* is deprecated and shall not be used when stating mandatory requirements; *will* is only used in statements of fact.

- The word *should* is used to indicate that among several possibilities one is recommended as particularly suitable, without mentioning or excluding others; or that a certain course of action is preferred but not necessarily required; or that (in the negative form) a certain course of action is deprecated but not prohibited (*should equals is recommended that*).

- The word *may* is used to indicate a course of action permissible within the limits of the standard (*may equals is permitted*).

- The word *can* is used for statements of possibility and capability, whether material, physical, or causal (*can equals is able to*).
4.5.2 Codec Specific Information Elements 27
4.5.3 Media Packet Header Requirements 30
4.5.4 Media Payload Format .. 30

4.6 ATRAC family .. 30
4.6.1 Reference .. 30
4.6.2 Codec Specific Information Elements 30
4.6.3 Media Packet Header Requirements 33
4.6.4 Media Payload Format .. 34

4.7 Non-A2DP Codec ... 34
4.7.1 Reference .. 34
4.7.2 Codec Specific Information Elements 34
4.7.3 Media Packet Header Requirements 35
4.7.4 Media Payload Format .. 35

5 GAVDP Interoperability Requirements 36
5.1 AVDTP Interoperability Requirements 36
 5.1.1 Signalling procedures .. 36
 5.1.2 Transport Services .. 36
 5.1.3 Error Codes ... 36
5.2 L2CAP Interoperability Requirements 38
 5.2.1 Maximum Transmission Unit ... 39
 5.2.2 Flush Timeout .. 39
5.3 SDP Interoperability Requirements 39
5.4 Link Manager Interoperability Requirements 41
5.5 Link Controller Interoperability Requirements 41
 5.5.1 Class of Device .. 42

6 Generic Access Profile Interoperability Requirements 43

7 Testing ... 44

8 References .. 45

9 List of Figures .. 47

10 List of Tables ... 48

11 Appendix A (Informative): Audio Streaming with Content Protection 49

12 Appendix B: Technical Specification of SBC 50
 12.1 Introduction .. 50
 12.2 Glossary ... 50
 12.3 Symbols and Abbreviations .. 50
 12.3.1 Arithmetic Operators ... 50
 12.3.2 Logical Operators .. 51
 12.3.3 Relation Operators .. 51
 12.3.4 Bitwise Operators .. 51
12.3.5 Assignment .. 51
12.3.6 Mnemonics .. 51
12.3.7 Constants ... 52
12.3.8 Ranges 52
12.3.9 Number Notation .. 52

12.4 Syntax .. 52
12.5 Semantics ... 54
 12.5.1 Frame_header .. 54
 12.5.2 scale_factors ... 55
 12.5.3 audio_samples ... 55
 12.5.4 padding 55

12.6 Decoding Processes .. 56
 12.6.1 Frame Header .. 56
 12.6.2 Scale Factors ... 57
 12.6.3 Bit Allocation .. 57
 12.6.4 Reconstruction of the Subband Samples 64
 12.6.5 Joint Processing .. 64
 12.6.6 Synthesis Filter ... 64

12.7 Encoding Processes .. 66
 12.7.1 Analysis Filter ... 67
 12.7.2 Scale Factors ... 69
 12.7.3 Joint_Stereo Channel Mode Operation 69
 12.7.4 Bit Allocation ... 69
 12.7.5 Quantization .. 69

12.8 Tables ... 69
12.9 Calculation of Bit Rate and Frame Length 70

13 Appendix C (Informative): Signalling Flows 72
 13.1 Audio Streaming Set Up ... 72
 13.2 Audio Streaming .. 73

14 Appendix D: Acronyms and Abbreviations 75
1 Introduction

1.1 Scope

The Advanced Audio Distribution Profile (A2DP) defines the protocols and procedures that realize distribution of audio content of high-quality in mono or stereo on ACL channels. The term "advanced audio", therefore, should be distinguished from "Bluetooth audio", which indicates distribution of narrow band voice on SCO channels as defined in Chapter 12 of Bluetooth Baseband specification [1].

A typical usage case is the streaming of music content from a stereo music player to headphones or speakers. The audio data is compressed in a proper format for efficient use of the limited bandwidth. Surround sound distribution is not included in the scope of this profile.

The A2DP focuses on audio streaming, while the Video Distribution Profile (VDP) specifies video streaming. Support of both profiles enables us to distribute video content accompanied with high-quality audio. The usage case of video and audio streaming is described in the VDP.

Note also that the A2DP does not include remote control functions. Devices may support remote control features by implementing both A2DP and the control profile as depicted, for example, in the usage scenario of Audio/Video Remote Control Profile[2].

Editor's note: The A/V WG has requested additional QoS support in the next revision of the Bluetooth data link specification. When other profiles with stringent requirements are used in conjunction with this profile the performance may be degraded due to insufficient support of QoS in the current Bluetooth specification v.1.1, which all profiles use.

1.2 Profile Dependency

In Figure 1.1, the structure and the dependencies of the profiles are depicted. A profile is dependent upon another profile if it re-uses parts of that profile, by implicitly or explicitly referencing it. Dependency is illustrated in the figure. A profile has dependencies on the profile(s) in which it is contained – directly and indirectly.

As indicated in the figure, the A2DP is dependent upon the Generic Access Profile (GAP), and also the Generic Audio/Video Distribution Profile (GAVDP) [3], which defines procedures required to setup an audio/video streaming. The A2DP defines parameters and procedures that are specific for audio streaming. The terminology, user interface and procedures as defined in the GAP and GAVDP are applicable to this profile, unless explicitly stated otherwise.
1.3 Symbols and Conventions

1.3.1 Requirement Status Symbols

In this document the following symbols are used:

‘M’ for mandatory to support (used for capabilities that \textit{shall} be used in the profile).

‘O’ for optional to support (used for capabilities that \textit{may} be used in the profile).

‘C’ for conditional support (used for capabilities that \textit{shall} be used in case a certain other capability is supported).

‘X’ for excluded (used for capabilities that \textit{may} be supported by the unit, but that \textit{shall} never be used in the profile).

‘N/A’ for not applicable (in the given context it is impossible to use this capability).

Some excluded capabilities are capabilities that, according to the relevant Bluetooth specification, are mandatory. These are features that \textit{may} degrade operation of
devices following this profile. Therefore, these features shall never be activated while a unit is operating as a unit within this profile.

1.3.2 Definition

1.3.2.1 RFA

Reserved for Future Additions. Bits with this designation shall be set to zero. Receivers shall ignore these bits.

1.3.2.2 RFD

Reserved for Future Definition. These bit value combinations or bit values are not allowed in the current specification but may be used in future versions. The receiver shall check that unsupported bit value combination is not used.
2 Profile Overview

2.1 Profile Stacks

The figure below shows the protocols and entities used in this profile.

![Protocol Model](image)

Figure 2.1: Protocol Model

The Baseband[1], LMP[5], L2CAP[6], and SDP[7] are Bluetooth protocols defined in the Bluetooth Core specifications. AVDTP[4] consists of a signalling entity for negotiation of streaming parameters and a transport entity that handles streaming itself.

The Application layer shown in Figure 2.1 is the entity in which the device defines application service and transport service parameters. The entity also adapts the audio streaming data into the defined packet format, or vice versa.

For the shaded protocols/entities in Figure 2.1, the GAVDP applies, except in those cases where this profile explicitly states deviations.

2.2 Configurations and Roles

The following roles are defined for devices that implement this profile:

Source (SRC) – A device is the SRC when it acts as a source of a digital audio stream that is delivered to the SNK of the piconet.
Sink (SNK) – A device is the SNK when it acts as a sink of a digital audio stream delivered from the SRC on the same piconet.

Examples of configurations illustrating the roles for this profile are depicted in Figure 2.2.

![Figure 2.2: Examples of Configuration](image)

2.3 User Requirements and Scenarios

The following scenario is covered by this profile:

- Setup/control/manipulate a streaming of audio data from the SRC to the SNK(s).

The following restrictions are applied to this profile:

1. The profile does not support a synchronized point-to-multipoint distribution.

2. There exists certain delay between the SRC and the SNK due to radio signal processing, data buffering, and encode/decode of the stream data. Countering the effects of such delays depends on implementation.

The following requirements are set in this profile:
3 The audio data rate should be sufficiently smaller than usable bit rate on the Bluetooth link. This is to allow retransmission schemes to reduce the effects of packet loss.

4 The profile does not exclude any content protection method.

2.4 Profile Fundamentals

The profile fundamentals are same as defined in the GAVDP in addition to the following requirement.

- Content Protection is provided at the application level and is not a function of the Bluetooth link level security protocol.

2.5 Conformance

When conformance to this profile is claimed, all capabilities indicated mandatory for this profile shall be supported in the specified manner (process mandatory). This also applies for optional and conditional capabilities for which support is indicated. All mandatory, optional, and conditional capabilities, for which support is indicated, are subject to verification as part of the Bluetooth certification program.
3 Application Layer

This section describes the feature requirements on units complying with the A2DP.

Table 3.1 shows the feature requirements for this profile.

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Feature</th>
<th>Support in SRC</th>
<th>Support in SNK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Audio Streaming</td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>

Table 3.1: Application Layer Features

Table 3.2 maps each feature to the procedures used for that feature, and shows whether the procedure is optional, mandatory, or conditional. The procedures are described in the reference section.

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Feature</th>
<th>Procedure</th>
<th>Ref.</th>
<th>Support in SRC</th>
<th>Support in SNK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Audio Streaming</td>
<td>Send Audio Stream</td>
<td>3.2.1</td>
<td>M</td>
<td>N/A</td>
</tr>
<tr>
<td>1</td>
<td>Audio Streaming</td>
<td>Receive Audio Stream</td>
<td>3.2.2</td>
<td>N/A</td>
<td>M</td>
</tr>
</tbody>
</table>

Table 3.2: Application Layer Feature to Procedure Mapping

3.1 Audio Streaming Set Up

When a device wishes to start streaming of audio content, the device firstly needs to set up a streaming connection. Signalling procedures and typical signalling flows are illustrated in Section 4.1 and Appendix A of GAVDP[3], respectively. During such set up procedure, the devices select the most suitable audio streaming parameters. There are two kinds of services configured; one is an application service capability, and the other is a transport service capability. (For details, see Section 4.4 in AVDTP[4].) This profile specifies audio-specific parameters necessary for these signalling procedures. An example of how the session signalling is performed is described in Chapter 14 of GAVDP[3] and in Chapter 13 of this specification.

The application service capability for A2DP consists of audio codec capability and content protection capability. Requirements for audio codec interoperability and details of codec parameters such as mode, sampling frequency, and bit rate are described in Chapter 4. The content protection capability is described in Appendix A as informative.

The transport service capability is provided by AVDTP in order to manipulate the streaming packets more intelligently. Appropriate configuration of these services increases channel throughput. Available services are listed in Section 5.1.2.

3.2 Audio Streaming

Once streaming connection is established and Start Streaming procedure in GAVDP is executed, both SRC and SNK are in the STREAMING state, in which the SRC
(SNK) is ready to send (receive) audio stream. (See Section 4.1 in GAVDP[3].) The SRC uses the Send Audio Stream procedure to send audio data to the SNK, which in turn employs the Receive Audio Stream procedure to receive the audio data. The block diagrams of these procedures and created packet format are shown in Figure 3.1. In Chapter 4 audio-specific parameters in AVDTP header and media payload format are also specified.

Note again that the devices shall be in the STREAMING state to send/receive audio stream. If the SRC/SNK wishes to send/receive the audio stream whereas the state is still at OPEN, the SRC/SNK shall initiate Start Streaming procedure defined in GAVDP.

3.2.1 Send Audio Stream

In the Send Audio Stream procedure, the SRC shall, if needed, encode the data into a selected format in the signalling session. Then, the application layer of the SRC shall adapt the encoded data into the defined media payload format. The frame of encoded audio data is adapted to the defined payload format as defined in Chapter 4.

When content protection is in use, a content protection header may precede encrypted audio content. This is content protection method dependent.

Afterwards, the stream data shall be handed down to the AVDTP entity through the exposed interface (Interface 4) defined in Chapter 2 of AVDTP[4]. The stream data shall be sent out on the transport channel using the selected transport services defined in Section 5.4 of AVDTP[4].

3.2.2 Receive Audio Stream

The AVDTP entity of the SNK shall receive the stream data from the transport channel using the selected transport services and pass it to the application layer by exposed interface defined in Chapter 2 of AVDTP[4].

When a content protection method is active, the application layer of the SNK shall process the retrieved AVDTP payload as described by the content protection method. Typically, this processing entails content protection header analysis and decryption of associated encrypted content.

If applicable, the frame of audio data shall be decoded according to the selected coding format.
Figure 3.1: Block Diagram of Audio Streaming Procedures and the Packet Format
4 Audio Codec Interoperability Requirements

4.1 Overview

This chapter defines necessary information specific for audio codec. In Section 4.2 definition of codecs used in this profile version 1.0 and their requirements are fully described. Additional information about codec introduced after A2DP version 1.0 is described in Bluetooth Assigned Numbers[8].

Remaining sections provide reference for each codec as well as the following information:

- **Audio codec capabilities** define the capability field and its parameters necessary for signalling procedures in the streaming set up. Related procedures in GAVDP are *Connection Establishment* and *Change Parameters* procedures.

- **Media packet header requirements** define codec specific parameters in the media packet header, which shall be added to the media payload in the AVDTP entity. (See Figure 3.1)

- **Media payload format** defines the codec specific payload format in the AVDTP packet, which shall be used in the *Audio Streaming* procedures in Section 3.2. See also Figure 3.1.

4.2 Support of Codecs

Table 4.1 shows supported *Mandatory* and *Optional* codecs in this profile.

<table>
<thead>
<tr>
<th>Codec Type</th>
<th>Support</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBC</td>
<td>M</td>
<td>4.3</td>
</tr>
<tr>
<td>MPEG-1,2 Audio</td>
<td>O</td>
<td>4.4</td>
</tr>
<tr>
<td>MPEG-2,4 AAC</td>
<td>O</td>
<td>4.5</td>
</tr>
<tr>
<td>ATRAC family</td>
<td>O</td>
<td>4.6</td>
</tr>
</tbody>
</table>

Table 4.1: Supported codecs

The following codecs are treated as *Non-A2DP* codecs:

- The codecs that are not on Table 4.1.
- The *Mandatory or Optional* codecs on Table 4.1 used in non-conforming way.

Requirements for the use of *Non-A2DP* codecs are defined in Section 4.2.3 and 4.7.

4.2.1 Mandatory Codec

The A2DP mandates low complexity subband codec (SBC) to ensure the interoperability. The device shall implement a SBC encoder when the device is the **SRC**, and a SBC decoder when the device is the **SNK**. All other codecs in this document are called *Non-Mandatory* codecs.
4.2.2 Optional codecs

The device may also support Optional codecs to maximize its usability. When both SRC and SNK support the same Optional codec, this codec may be used instead of Mandatory codec. Optional codecs available in this profile version 1.0 are listed in Table 4.1. To maintain interoperability, the requirements in Section 4.2.4 shall be applied.

4.2.3 Non-A2DP Codecs

The device may support other codecs as Non-A2DP codecs. A user of the Non-A2DP codec (hereafter the Vendor) oneself defines parameters and any information necessary for use of the codec in A2DP. The profile does not specify anything for Non-A2DP codecs, whereas the following requirements are imposed:

1. To maintain interoperability, the requirements in Section 4.2.4 shall be applied.
2. The Non-A2DP codec can be upgraded to Optional when the following items are prepared;
 - Clear pointer to the specification, test vectors, and related documents
 - Necessary parameters for Signalling

4.2.4 Codec Interoperability Requirements

When the SRC wishes to send an audio data whose codec format is not supported by the SNK, the data shall be transcoded into SBC. Therefore, the following requirements are applied to the SRC when it supports Non-Mandatory codecs.

- Transcoding to SBC is only required for any SRC input whose format is not supported by the SNK

For example, when the SRC accepts pre-encoded audio data in the Non-Mandatory codec format, the SRC shall have a decoder of this Non-Mandatory codec as well as a SBC encoder for transcoding.

4.2.5 Audio Codec Type Field Values

Refer to Bluetooth Assigned Numbers[8] for audio codec types available in this profile. Message format of audio codec capabilities is defined in Section 8.19.5 of AVDTP[4].

The following section defines audio codec parameters and formats required for audio streaming on the Bluetooth link.

4.3 SBC

4.3.1 Reference

SBC is mandatory to support in this profile. The SBC specification is a part of the Bluetooth specification. The codec specification is attached in Chapter 12 (Appendix B) of this profile.
4.3.2 Codec Specific Information Elements

Figure 4.1 shows Codec Specific Information Elements for SBC used in the signalling procedures. For reference, see Section 8.19.5 of AVDTP[4]. The following section defines the field values and their requirements. The meaning of each value is defined in the SBC specification in Appendix B. If the packet includes improper settings, the error code shall be returned as specified in Section 5.1.3.

<table>
<thead>
<tr>
<th>Octet0</th>
<th>Octet1</th>
<th>Octet2</th>
<th>Octet3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling Frequency</td>
<td>Channel Mode</td>
<td>Block Length</td>
<td>Subbands</td>
</tr>
</tbody>
</table>

Note: In the Get Capabilities Response of AVDTP, one or more bits may be defined/set in each field. On the other hand, in the Set Configuration Command and the Reconfigure Command of AVDTP, only one bit shall be defined/set in each field.

4.3.2.1 Sampling Frequency

Table 4.2 shows the value of Sampling Frequency field for SBC. For the decoder in the SNK all features shall be supported. The encoder in the SRC shall support at least one of the sampling frequencies of 44.1kHz and 48kHz.

<table>
<thead>
<tr>
<th>Position</th>
<th>Sampling Frequency (Hz)</th>
<th>Support in SRC</th>
<th>Support in SNK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octet0; b7</td>
<td>16000</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Octet0; b6</td>
<td>32000</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Octet0; b5</td>
<td>44100</td>
<td>C1</td>
<td>M</td>
</tr>
<tr>
<td>Octet0; b4</td>
<td>48000</td>
<td>C1</td>
<td>M</td>
</tr>
<tr>
<td>C1: At least one of the values shall be supported</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.2: Sampling Frequency for SBC

4.3.2.2 Channel Mode

Table 4.3 shows the value of Channel Mode field for SBC. For the decoder in the SNK all features shall be supported. The encoder in the SRC shall support at least MONO and one of DUAL CHANNEL, STEREO and JOINT STEREO modes.

<table>
<thead>
<tr>
<th>Position</th>
<th>Channel Mode</th>
<th>Support in SRC</th>
<th>Support in SNK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octet0; b3</td>
<td>MONO</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Octet0; b2</td>
<td>DUAL CHANNEL</td>
<td>C1</td>
<td>M</td>
</tr>
<tr>
<td>Octet0; b1</td>
<td>STEREO</td>
<td>C1</td>
<td>M</td>
</tr>
<tr>
<td>Octet0; b0</td>
<td>JOINT STEREO</td>
<td>C1</td>
<td>M</td>
</tr>
<tr>
<td>C1: At least one of the values shall be supported</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.3: Channel Mode for SBC
4.3.2.3 Block Length

Table 4.4 shows the value of Block Length field for SBC. Both encoder in the SRC and decoder in the SNK shall support all of the parameters.

<table>
<thead>
<tr>
<th>Position</th>
<th>Block length</th>
<th>Support in SRC</th>
<th>Support in SNK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octet1; b7</td>
<td>4</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Octet1; b6</td>
<td>8</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Octet1; b5</td>
<td>12</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Octet1; b4</td>
<td>16</td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>

Table 4.4: Block Length for SBC

4.3.2.4 Subbands

Table 4.5 shows the value of Number of Subbands field for SBC. For the decoder in the SNK, all features shall be supported. The encoder in the SRC shall support at least 8 subbands case.

<table>
<thead>
<tr>
<th>Position</th>
<th>Number of subbands</th>
<th>Support in SRC</th>
<th>Support in SNK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octet1; b3</td>
<td>4</td>
<td>O</td>
<td>M</td>
</tr>
<tr>
<td>Octet1; b2</td>
<td>8</td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>

Table 4.5: Number of Subbands for SBC

4.3.2.5 Allocation Method

Table 4.6 shows the value of Allocation Method field for SBC. For the decoder in the SNK, all features shall be supported. The encoder in the SRC shall support at least the LOUDNESS method.

<table>
<thead>
<tr>
<th>Position</th>
<th>Allocation method</th>
<th>Support in SRC</th>
<th>Support in SNK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octet1; b1</td>
<td>SNR</td>
<td>O</td>
<td>M</td>
</tr>
<tr>
<td>Octet1; b0</td>
<td>Loudness</td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>

Table 4.6: Allocation Method for SBC

4.3.2.6 Minimum / Maximum Bitpool Value

The device sets the range of SBC bitpool parameters using Minimum / Maximum Bitpool Value fields expressed by 8 bit uiMsbf (Unsigned integer, Most significant bit first), ranging from 2 to 250. In the Get Capabilities procedure in AVDTP, the Minimum / Maximum Bitpool Value fields contain allowed variable range of the bitpool value in the ACP, while in the Stream Configuration or Stream Reconfigure procedure in AVDTP, the fields contain variable range of the bitpool value that the INT expects to send/receive.¹ Using the bitpool value and other codec parameters (sampling frequency, channel mode, block length and the number of subbands), the bit rate and frame length of the audio stream is calculated as shown in Section 12.9.

¹ If Minimum / Maximum Bitpool Value fields contain the same number, the bitpool value shall be fixed.
The codec information that determines the bit rate is contained in the SBC frame header and repeatedly sent to the **SNK** associated with audio data stream. The **SRC** is capable of changing the bit rate dynamically by changing the bitpool parameter without suspending. The other parameters can be changed during the **Change Parameters** procedure defined in GAVDP.

The decoder of the **SNK** shall support all possible bitpool values that do not result in excess of the maximum bit rate. This profile limits the available maximum bit rate to 320kb/s for mono, and 512kb/s for two-channel modes.

For the encoder of the **SRC**, it is required to support at least one possible bitpool value. However, it is recommended for the encoder to support the following settings shown in Table 4.7.

<table>
<thead>
<tr>
<th>SBC encoder settings*</th>
<th>Middle Quality</th>
<th>High Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mono</td>
<td>Joint Stereo</td>
</tr>
<tr>
<td>Sampling frequency (kHz)</td>
<td>44.1</td>
<td>48</td>
</tr>
<tr>
<td>Bitpool value</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>Resulting frame length (bytes)</td>
<td>46</td>
<td>44</td>
</tr>
<tr>
<td>Resulting bit rate (kb/s)</td>
<td>127</td>
<td>132</td>
</tr>
</tbody>
</table>

*Other settings: Block length = 16, Allocation method = Loudness, Subbands = 8

Table 4.7: Recommended sets of SBC parameters in the **SRC** device

Note again that the frame length shown in this table is variable according to the bitpool value. For the most efficient use of the transport in L2CAP, the frame length may be adjusted when media payload is constructed. For creation of media payload format using SBC frames, see Section 4.3.4.

4.3.3 Media Packet Header Requirements

4.3.3.1 Timestamp (TS)

The clock frequency necessary to create TS shall be set to the sample rate of the encoded audio data.

If a media payload consists of multiple SBC frames, the TS of the media packet header represent the TS of the first SBC frame. The TS of the following SBC frames shall be calculated using the sample rate and the number of samples per frame per channel.

When a SBC frame is fragmented into multiple media packets, all packets that make up a fragmented SBC frame shall use the same TS.

4.3.3.2 Payload Type (PT)

A payload type in the dynamic range shall be chosen.
4.3.3.3 Marker (M) bit

Set to zero.

4.3.3.4 Extension (X) bit

Not used, set to zero.

4.3.4 Media Payload Format

The media payload for SBC shown in Figure 4.2 consists of SBC specific header and SBC frame(s) defined in the SBC specification.

If the configured MTU size for the transport channel is greater or equal to the SBC frame size + the sum of [Media Payload header size, Content Protection header size (if Content Protection is selected), Media Packet header size], then a media payload shall contain an integral number of complete SBC frames (a).

If this is not the case, and provided that the multiplexing service of AVDTP is not selected, the SBC frame shall be fragmented across several media payloads (b). All fragmented packets, except the last one, shall have the same total data packet size.

A media payload always starts with an 8-bit header, which is placed before the SBC data. If the multiplexing service of AVDTP is selected, then it is recommended not to fragment the SBC frame across several media payloads, because AVDTP shall fragment the media payloads across several L2CAP packets if necessary.

(a) When the media payload contains an integral number of SBC frames

| Header | SBC frame | SBC frame | SBC frame |

(b) When the SBC frame is fragmented

| Header | First fragment of SBC frame |
| Header | Subsequent fragments of SBC frame |

Figure 4.2: Media payload format of SBC
Figure 4.3 shows the media payload header format of SBC.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>S</td>
<td>L</td>
<td>RFA</td>
<td>Number of frames</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4.3: Header format of media payload for SBC

- _F bit_ – Set to 1 if the SBC frame is fragmented, otherwise set to 0.
- _S bit_ – Set to 1 for the starting packet of a fragmented SBC frame, otherwise set to 0.
- _L bit_ – Set to 1 for the last packet of a fragmented SBC frame, otherwise set to 0.
- _RFA_ – See definition Section 1.3.2.1.
- _Number of frames_ (4 bits) – If the _F bit_ is set to 0, this field indicates the number of frames contained in this packet. If the _F bit_ is set to 1, this field indicates the number of remaining fragments, including the current fragment. Thus the last counter value shall be one. For example, if there are three fragments then the counter has value 3, 2 and 1 for subsequent fragments. This field is expressed by 4 bit UiMsbf.

4.4 MPEG-1,2 Audio

4.4.1 Reference

For MPEG-1 Audio, refer to [12]. For MPEG-2 Audio, refer to [13].

4.4.2 Codec Specific Information Elements

Figure 4.4 shows _Codec Specific Information Elements_ for MPEG-1,2 Audio used in the signalling procedures. For reference, see Section 8.19.5 AVDTP[4]. The following section defines the field values and their requirements. The meaning of each value is defined in [12] and [13]. Support columns in each field value show the requirements to fulfil when this codec is supported. If the packet includes improper settings, the error code shall be returned as specified in Section 5.1.3.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>CRC</td>
<td>Channel Mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Octet0</td>
</tr>
<tr>
<td>RFA</td>
<td>MPF</td>
<td>Sampling Frequency</td>
<td></td>
<td></td>
<td>Octet1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBR</td>
<td>Bit Rate</td>
<td></td>
<td>Octet2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit Rate</td>
<td></td>
<td>Octet3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4.4: Codec Specific Information Elements for MPEG-1,2 Audio

Note: In the Get Capabilities Response of AVDTP, one or more values may be defined/set in each field. On the other hand, in the Set Configuration Command and the Reconfigure Command of AVDTP, only one value shall be defined/set in each field.

4.4.2.1 Layer

Table 4.8 shows the value of _Layer_ defined in MPEG-1,2 Audio. The _SRC_ and _SNK_ shall support at least one of Layer I (mp1), Layer II (mp2) and Layer III (mp3).
4.4.2.2 CRC Protection

Support of CRC Protection is mandatory in the SNK and optional in the SRC.

<table>
<thead>
<tr>
<th>Position</th>
<th>CRC Protection</th>
<th>Support in SRC</th>
<th>Support in SNK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octet0; b4</td>
<td>Protection supported</td>
<td>O</td>
<td>M</td>
</tr>
</tbody>
</table>

Table 4.9: CRC Protection assignment for MPEG-1,2 Audio

4.4.2.3 Channel Mode

Table 4.10 shows the value of Channel Mode field for MPEG-1,2 Audio. For the decoder in the SNK all features shall be supported. The encoder in the SRC shall support at least one of MONO, DUAL CHANNEL, STEREO and JOINT STEREO modes.

<table>
<thead>
<tr>
<th>Position</th>
<th>Channel Mode</th>
<th>Support in SRC</th>
<th>Support in SNK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octet0; b3</td>
<td>MONO</td>
<td>C1</td>
<td>M</td>
</tr>
<tr>
<td>Octet0; b2</td>
<td>DUAL CHANNEL</td>
<td>C1</td>
<td>M</td>
</tr>
<tr>
<td>Octet0; b1</td>
<td>STEREO</td>
<td>C1</td>
<td>M</td>
</tr>
<tr>
<td>Octet0; b0</td>
<td>JOINT STEREO</td>
<td>C1</td>
<td>M</td>
</tr>
</tbody>
</table>

C1: At least one of the values shall be supported

Table 4.10: Channel Mode for MPEG-1,2 Audio

4.4.2.4 Media Payload Format (MPF)

MPF field indicates the support of media payload format for MPEG-1,2 Audio. It is mandatory to support MPF-1 in Section 4.4.4. The MPF field is set to 1 if MPF-2 in Section 4.4.4 is also supported, or if MPF-2 is configured as a transferred media payload format; otherwise it is set to 0.

4.4.2.5 Sampling Frequency

Table 4.11 shows the value of Sampling Frequency field for MPEG-1,2 Audio. For the decoder in the SNK the sampling frequencies 44.1 kHz and 48 kHz are mandatory to support. The encoder in the SRC shall support at least one of the sampling frequencies of 44.1kHz and 48kHz. Other sampling frequencies are optional both for the SNK and the SRC.
Position	Sampling Frequency (Hz)	Support in SRC	Support in SNK
Octet1; b5 | 16000 | O | O
Octet1; b4 | 22050 | O | O
Octet1; b3 | 24000 | O | O
Octet1; b2 | 32000 | O | O
Octet1; b1 | 44100 | C1 | M
Octet1; b0 | 48000 | C1 | M

C1: At least one of the values shall be supported

Table 4.11: Sampling Frequency for MPEG-1,2 Audio

4.4.2.6 VBR

In this profile, support of VBR (Variable Bit Rate) for MPEG-1,2 Audio is mandatory for the decoder in the **SNK** and optional for the encoder in the **SRC**. Layer I and Layer II do not mandate this parameter, but most of the actual devices support it commonly.

Position	VBR Support	Support in SRC	Support in SNK
Octet2; b7 | VBR supported | O | M

Table 4.12: VBR support for MPEG-1,2 Audio

4.4.2.7 Bit Rate Index

Table 4.13 shows the value of *Bit Rate Index* field for MPEG-1,2 Audio. The index value represents the actual bit rate value defined in the referenced specification. For the decoder in the **SNK** all features shall be supported except for the index value ‘0000’. The encoder in the **SRC** shall support at least one of the index values that are mandatory to support in the **SNK**.

Note that MPEG-1 Layer II (mp2) has restriction in allowed combination of total bit rate and channel mode (for MPEG-1 see Section 2.4.2.3 in [12]). This restriction overrules the support of *Bit Rate Index* shown in Table 4.13.
4.4.2.8 RFA

See definition Section 1.3.2.1

4.4.3 Media Packet Header Requirements

The media packet header requirements for MPEG-1,2 Audio are contained in the specification of media payload format referenced in Section 4.4.4.

4.4.4 Media Payload Format

MPEG-1,2 Audio uses payload formats defined in [14] and [15]. This profile mandates support of the format in MPF-1. MPF-2 provides more error-robustness for MPEG-1,2 Audio Layer III. See also Section 4.4.2.4. For MPF-1, refer to [14]. For MPF-2, refer to [15].

4.5 MPEG-2, 4 AAC

4.5.1 Reference

For MPEG-2 AAC, refer to [16]. For MPEG-4 AAC, refer to [17].

4.5.2 Codec Specific Information Elements

Figure 4.5 shows *Codec Specific Information Elements* for MPEG-2,4 AAC used in the signalling procedures. For reference, see Section 8.19.5 of AVDTP[4]. The following section defines the field values and their requirements. Support columns in each field value show the requirements to fulfil when this codec is supported. If the packet includes improper settings, the error code shall be returned as specified in Section 5.1.3.

Table 4.13: Bit Rate Index for MPEG-1,2 Audio

<table>
<thead>
<tr>
<th>Position</th>
<th>Bit Rate Index</th>
<th>Support in SRC</th>
<th>Support in SNK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octet2; b6</td>
<td>‘1110’</td>
<td>C1</td>
<td>M</td>
</tr>
<tr>
<td>Octet2; b5</td>
<td>‘1101’</td>
<td>C1</td>
<td>M</td>
</tr>
<tr>
<td>Octet2; b4</td>
<td>‘1100’</td>
<td>C1</td>
<td>M</td>
</tr>
<tr>
<td>Octet2; b3</td>
<td>‘1011’</td>
<td>C1</td>
<td>M</td>
</tr>
<tr>
<td>Octet2; b2</td>
<td>‘1010’</td>
<td>C1</td>
<td>M</td>
</tr>
<tr>
<td>Octet2; b1</td>
<td>‘1001’</td>
<td>C1</td>
<td>M</td>
</tr>
<tr>
<td>Octet2; b0</td>
<td>‘1000’</td>
<td>C1</td>
<td>M</td>
</tr>
<tr>
<td>Octet3; b7</td>
<td>‘0111’</td>
<td>C1</td>
<td>M</td>
</tr>
<tr>
<td>Octet3; b6</td>
<td>‘0110’</td>
<td>C1</td>
<td>M</td>
</tr>
<tr>
<td>Octet3; b5</td>
<td>‘0101’</td>
<td>C1</td>
<td>M</td>
</tr>
<tr>
<td>Octet3; b4</td>
<td>‘0100’</td>
<td>C1</td>
<td>M</td>
</tr>
<tr>
<td>Octet3; b3</td>
<td>‘0011’</td>
<td>C1</td>
<td>M</td>
</tr>
<tr>
<td>Octet3; b2</td>
<td>‘0010’</td>
<td>C1</td>
<td>M</td>
</tr>
<tr>
<td>Octet3; b1</td>
<td>‘0001’</td>
<td>C1</td>
<td>M</td>
</tr>
<tr>
<td>Octet3; b0</td>
<td>‘0000’</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

C1: At least one of the values shall be supported
4.5.2.1 Object Type

Table 4.14 shows the value of Object Type field for MPEG-2,4 AAC. The SRC and SNK shall support MPEG-2 AAC LC, and other values are optional.

<table>
<thead>
<tr>
<th>Position</th>
<th>Object Type</th>
<th>Support in SRC</th>
<th>Support in SNK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octet0; b7</td>
<td>MPEG-2 AAC LC</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Octet0; b6</td>
<td>MPEG-4 AAC LC</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Octet0; b5</td>
<td>MPEG-4 AAC LTP</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Octet0; b4</td>
<td>MPEG-4 AAC scalable</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Octet0; b3</td>
<td>RFA</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Octet0; b2</td>
<td>RFA</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Octet0; b1</td>
<td>RFA</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Octet0; b0</td>
<td>RFA</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 4.14: Object Type for MPEG-2,4 AAC

4.5.2.2 Sampling Frequency

Table 4.15 shows the value of Sampling Frequency field for MPEG-2,4 AAC. For the decoder in the SNK the sampling frequencies 44.1 kHz and 48 kHz are mandatory to support. The encoder in the SRC shall support at least one of the sampling frequencies of 44.1kHz and 48kHz. Other sampling frequencies are optional both for SNK and SRC.
4.5.2.3 Channels

Table 4.16 shows the value of *Channels* field for MPEG-2,4 AAC. The **SNK** shall support both of channels, while the **SRC** shall support at least one of the channels.

<table>
<thead>
<tr>
<th>Position</th>
<th>Channels</th>
<th>Support in SRC</th>
<th>Support in SNK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octet2; b3</td>
<td>1</td>
<td>C1</td>
<td>M</td>
</tr>
<tr>
<td>Octet2; b2</td>
<td>2</td>
<td>C1</td>
<td>M</td>
</tr>
</tbody>
</table>

C1: At least one of the values shall be supported

Table 4.16: Channels field for MPEG-2,4 AAC

4.5.2.4 Bit rate

Bit rate field is assigned for the bit rate in bits per second in case of a constant rate stream, or the maximum peak bit rate (measured per frame) in case of a variable bit rate stream. A value of 0 indicates that the bit rate is not known. The field is expressed as a 23 bit UiMsbf as described in the following figure.

<table>
<thead>
<tr>
<th>Octet 3 (bits 6...0)</th>
<th>Octet 4</th>
<th>Octet 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>b22 b21 b20 b19 b18 b17 b16</td>
<td>b15 b14 b13 b12 b11 b10 b9 b8</td>
<td>b7 b6 b5 b4 b3 b2 b1 b0</td>
</tr>
</tbody>
</table>

Figure 4.6: Bit order for Bit rate field of MPEG-2,4 AAC

4.5.2.5 VBR

Support of *VBR* (Variable Bit Rate) is mandatory for the decoder in the **SNK** and optional for the encoder in the **SRC**.
Table 4.17: VBR support for MPEG-2,4 AAC

<table>
<thead>
<tr>
<th>Position</th>
<th>VBR Support</th>
<th>Support in SRC</th>
<th>Support in SNK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octet3; b7</td>
<td>VBR supported</td>
<td>O</td>
<td>M</td>
</tr>
</tbody>
</table>

4.5.2.6 RFA

See definition Section 1.3.2.1.

4.5.3 Media Packet Header Requirements

The media packet header requirements for MPEG-2,4 AAC are contained in the specification of media payload format referenced in Section 4.5.4.

4.5.4 Media Payload Format

MPEG-2,4 AAC uses the media payload format defined in [18]. The specification defines the payload format only for MPEG-4 audio; in use of MPEG-2 AAC LC, the audio stream shall be transformed to MPEG-4 AAC LC in the **SRC** by modifying the codec information and adapted into MPEG-4 LATM format before being put into Media Payload Format. The **SNK** shall retransform the stream into MPEG-2 AAC LC, if necessary.\(^2\) For details, see [16] and [17].

4.6 ATRAC family

4.6.1 Reference

ATRAC family is proprietary codec owned by Sony Corporation. Licensed users obtain the specifications of this codec. For details of license, contact Sony Corporation through the following e-mail address: bt-atrac3@jp.sony.com.

4.6.2 Codec Specific Information Elements

Figure 4.7 shows *Codec Specific Information Elements* for ATRAC family used in the signalling procedures. For reference, see Section 8.19.5 of AVDTP[4]. The following section defines the field values and their requirements. Support columns in each field value show the requirements to fulfil when this codec is supported. If the packet includes improper settings, the error code shall be returned as specified in Section 5.1.3.

\(^2\) When the MPEG-4 AAC LC is supported in the **SNK**, it is possible to decode the data as it is.
Figure 4.7: Codec Specific Information Elements for ATRAC family

Note: In the Get Capabilities Response of AVDTP, one or more values may be defined/set in each field. On the other hand, in the Set Configuration Command and the Reconfigure Command of AVDTP, only one value shall be defined/set in each field.

4.6.2.1 Version

Table 4.18 shows the value of Version field for ATRAC family. The Version field contains one specific version of ATRAC family. Therefore, if the device supports both ATRAC and ATRAC3, for example, two sets of Service Capabilities shall be exchanged.

<table>
<thead>
<tr>
<th>Bits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 6 5</td>
<td></td>
</tr>
<tr>
<td>0 0 1</td>
<td>ATRAC</td>
</tr>
<tr>
<td>0 1 0</td>
<td>ATRAC2</td>
</tr>
<tr>
<td>0 1 1</td>
<td>ATRAC3</td>
</tr>
<tr>
<td>Other values</td>
<td>RFD. See definition Section 1.3.2.2.</td>
</tr>
</tbody>
</table>

Table 4.18: Version for ATRAC family

4.6.2.2 Channel Mode

Table 4.19 shows the value of Channel Mode field for ATRAC family. The SRC and the SNK shall support at least one of the values.

<table>
<thead>
<tr>
<th>Position</th>
<th>Channel Mode</th>
<th>Support in SRC</th>
<th>Support in SNK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octet0; b4</td>
<td>Single channel</td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>Octet0; b3</td>
<td>Dual channel</td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>Octet0; b2</td>
<td>Joint stereo</td>
<td>C1</td>
<td>C2</td>
</tr>
</tbody>
</table>

C1,C2: At least one of the values shall be supported. For the additional conditions, refer to the specifications of ATRAC family.

Table 4.19: Channel Mode for ATRAC family

4.6.2.3 Fs (Sampling Frequency)

Table 4.20 shows the value of Sampling Frequency field for ATRAC family. The SRC and the SNK shall support at least one of the values.
Position	Sampling Frequency (Hz)	Support in SRC	Support in SNK
Octet1; b5 | 44100 | C1 | C2
Octet1; b4 | 48000 | C1 | C2

C1,C2: At least one of the values shall be supported. For the additional conditions, refer to the specifications of ATRAC family.

Table 4.20: Sampling Frequency for ATRAC family

4.6.2.4 VBR

Support of VBR (Variable Bit Rate) for ATRAC family is optional both for the SRC and the SNK.

Note that when the VBR is supported Bit Rate Index field in Section 4.6.2.5 shall be neglected since the device can adopt any bit rate under Maximum SUL value described in Section 4.6.2.6. When the VBR is not applied the Bit Rate Index field explicitly indicates supported bit rate, while the Maximum SUL field shall be neglected.

Position	VBR Support	Support in SRC	Support in SNK
Octet1; b3 | VBR supported | O | O

Table 4.21: VBR support for ATRAC family

4.6.2.5 Bit Rate Index

Table 4.22 shows the value of Bit Rate Index field for ATRAC family. The index value represents the actual bit rate value defined in the referenced specification. At least one of the values shall be supported both for the SRC and the SNK.
Table 4.22: Bit Rate Index for ATRAC family

<table>
<thead>
<tr>
<th>Position</th>
<th>Bit Rate Index</th>
<th>Support in SRC</th>
<th>Support in SNK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octet1; b2</td>
<td>0x0000</td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>Octet1; b1</td>
<td>0x0001</td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>Octet1; b0</td>
<td>0x0002</td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>Octet2; b7</td>
<td>0x0003</td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>Octet2; b6</td>
<td>0x0004</td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>Octet2; b5</td>
<td>0x0005</td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>Octet2; b4</td>
<td>0x0006</td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>Octet2; b3</td>
<td>0x0007</td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>Octet2; b2</td>
<td>0x0008</td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>Octet2; b1</td>
<td>0x0009</td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>Octet2; b0</td>
<td>0x000a</td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>Octet3; b7</td>
<td>0x000b</td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>Octet3; b6</td>
<td>0x000c</td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>Octet3; b5</td>
<td>0x000d</td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>Octet3; b4</td>
<td>0x000e</td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>Octet3; b3</td>
<td>0x000f</td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>Octet3; b2</td>
<td>0x0010</td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>Octet3; b1</td>
<td>0x0011</td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>Octet3; b0</td>
<td>0x0012</td>
<td>C1</td>
<td>C2</td>
</tr>
</tbody>
</table>

C1,C2: At least one of the values shall be supported. For the additional conditions, refer to the specifications of ATRAC family.

4.6.2.6 Maximum SUL

Sound Unit Length (SUL) is one of the parameters that determine bit rate of the audio stream. The Maximum SUL field with 16bits UlMsbf contains the maximum value (expressed in Byte) of the SUL that the decoder in the SNK supports. The SRC shall send audio streaming data whose SUL is equal to or smaller than that of maximum SUL of the decoder in the SNK.

The maximum SUL value in the SNK shall be notified to the SRC during Get Capabilities procedure of AVDTP initiated by the SRC, or during Stream Configuration procedure of AVDTP initiated by the SNK.

4.6.2.7 RFA

See definition Section 1.3.2.1.

4.6.3 Media Packet Header Requirements

4.6.3.1 Timestamp (TS)

The clock frequency necessary to create TS shall be set to the sample rate of the encoded audio data.
If a media payload consists of multiple codec frames of ATRAC family, the TS of the media packet header represent the TS of the first codec frame. The TS of the following codec frames shall be calculated using the sample rate and the number of samples per frame per channel.

4.6.3.2 Payload Type (PT)

A payload type in the dynamic range shall be chosen.

4.6.3.3 Marker (M) bit

Set to zero.

4.6.3.4 Extension (X) bit

Not used, set to zero.

4.6.4 Media Payload Format

Licensed users obtain the specification of Media Payload Format for ATRAC family. See Section 4.6.1.

4.7 Non-A2DP Codec

4.7.1 Reference

Definition and treatment of Non-A2DP codec is defined in Section 4.2.3.

4.7.2 Codec Specific Information Elements

Figure 4.8 shows Codec Specific Information Elements for Non-A2DP codec used in the signalling procedures. For reference, see Section 8.19.5 of AVDTP[4]. If the packet includes improper settings, the error code shall be returned as specified in Section 5.1.3.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vendor ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vendor Specific Codec ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vendor Specific Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4.8: Codec Specific Information Elements for Non-A2DP Codec

4.7.2.1 Vendor ID

The 32-bit Vendor ID defined in Bluetooth Assigned Numbers[8] shall be used.
4.7.2.2 Vendor Specific Codec ID

The Vendor Specific Codec ID field in Figure 4.8 contains 16-bit codec ID administered by the Vendor.

4.7.2.3 Vendor Specific Value

The Vendor Specific Value field in Figure 4.8 contains values specifically defined by the Vendor. Details are out of scope of this profile.

4.7.3 Media Packet Header Requirements

Media Packet Header requirements shall be defined by the Vendor.

4.7.4 Media Payload Format

Media Payload Format shall be defined by the Vendor.
5 GAVDP Interoperability Requirements

This profile requires compliance to the Generic A/V Distribution Profile (GAVDP)[3]. The following text together with the associated sub-clauses defines the requirements with regards to this profile, in addition to the requirements defined in GAVDP.

5.1 AVDTP Interoperability Requirements

5.1.1 Signalling procedures

In the Advanced Audio Distribution Profile, it is mandatory for the SRC and optional for the SNK to be able to establish a streaming connection, start streaming and release the streaming connection. The SRC can assume the role of both INT and ACP, while the SNK device can assume the role of ACP and optionally the role of INT. Therefore, it is mandatory for SRC to support ACP role, so that signalling procedures can be manipulated between any combination of a SRC device and a SNK device.

<table>
<thead>
<tr>
<th>Role in GAVDP</th>
<th>Support in SRC</th>
<th>Support in SNK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INT</td>
<td>M</td>
<td>O</td>
</tr>
<tr>
<td>2 ACP</td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>

Table 5.1: Roles in GAVDP

5.1.2 Transport Services

Table 5.2 shows support of AVDTP transport capabilities for this profile. In this profile Basic service is mandatory to support.

<table>
<thead>
<tr>
<th>Item no.</th>
<th>Capability</th>
<th>Ref.</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basic service</td>
<td>7.2 in [4]</td>
<td>M</td>
</tr>
<tr>
<td>2</td>
<td>Reporting service</td>
<td>7.3 in [4]</td>
<td>O</td>
</tr>
<tr>
<td>3</td>
<td>Recovery service</td>
<td>7.4 in [4]</td>
<td>O</td>
</tr>
<tr>
<td>4</td>
<td>Multiplexing service</td>
<td>7.5 in [4]</td>
<td>O</td>
</tr>
<tr>
<td>5</td>
<td>Robust header compression service</td>
<td>7.6 in [4]</td>
<td>O</td>
</tr>
</tbody>
</table>

Table 5.2: AVDTP transport capabilities

5.1.3 Error Codes

If the Codec Specific Information Elements include improper settings, the error code shall be returned as follows. Apart from the error codes specified in GAVDP[3], Table 5.3 below lists additional error codes that shall be used by the application if applicable errors are found in the commands received.

<table>
<thead>
<tr>
<th>Error ID</th>
<th>Related Signalling command</th>
<th>Related CODEC</th>
<th>Error Abbreviation</th>
<th>Error Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xC1</td>
<td>Set Configuration Reconfigure</td>
<td>ALL</td>
<td>INVALID_CODEC_TYPE</td>
<td>Media Codec Type is not valid</td>
</tr>
<tr>
<td>Code</td>
<td>Command</td>
<td>Configuration</td>
<td>Error Code</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>----------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>0xC2</td>
<td>Set Configuration Reconfigure</td>
<td>ALL</td>
<td>NOT_SUPPORTED_CODEC_TYPE</td>
<td>Media Codec Type is not supported</td>
</tr>
<tr>
<td>0xC3</td>
<td>Set Configuration Reconfigure</td>
<td>ALL</td>
<td>INVALID_SAMPLING_FREQUENCY</td>
<td>Sampling Frequency is not valid or multiple values have been selected</td>
</tr>
<tr>
<td>0xC4</td>
<td>Set Configuration Reconfigure</td>
<td>ALL</td>
<td>NOT_SUPPORTED_SAMPLING_FREQUENCY</td>
<td>Sampling Frequency is not supported</td>
</tr>
<tr>
<td>0xC5</td>
<td>Set Configuration Reconfigure</td>
<td>SBC</td>
<td>INVALID_CHANNEL_MODE</td>
<td>Channel Mode is not valid or multiple values have been selected</td>
</tr>
<tr>
<td>0xC6</td>
<td>Set Configuration Reconfigure</td>
<td>SBC</td>
<td>NOT_SUPPORTED_CHANNEL_MODE</td>
<td>Channel Mode is not supported</td>
</tr>
<tr>
<td>0xC7</td>
<td>Set Configuration Reconfigure</td>
<td>SBC</td>
<td>INVALID_SUBBANDS</td>
<td>None or multiple values have been selected for Number of Subbands</td>
</tr>
<tr>
<td>0xC8</td>
<td>Set Configuration Reconfigure</td>
<td>SBC</td>
<td>NOT_SUPPORTED_SUBBANDS</td>
<td>Number of Subbands is not supported</td>
</tr>
<tr>
<td>0xC9</td>
<td>Set Configuration Reconfigure</td>
<td>SBC</td>
<td>INVALID_ALLOCATION_METHOD</td>
<td>None or multiple values have been selected for Allocation Method</td>
</tr>
<tr>
<td>0xCA</td>
<td>Set Configuration Reconfigure</td>
<td>SBC</td>
<td>NOT_SUPPORTED_ALLOCATION_METHOD</td>
<td>Allocation Method is not supported</td>
</tr>
<tr>
<td>0xCB</td>
<td>Set Configuration Reconfigure</td>
<td>SBC</td>
<td>INVALID_MINIMUM_BITPOOL_VALUE</td>
<td>Minimum Bitpool Value is not valid</td>
</tr>
<tr>
<td>0xCC</td>
<td>Set Configuration Reconfigure</td>
<td>SBC</td>
<td>NOT_SUPPORTED_MINIMUM_BITPOOL_VALUE</td>
<td>Minimum Bitpool Value is not supported</td>
</tr>
<tr>
<td>0xCD</td>
<td>Set Configuration Reconfigure</td>
<td>SBC</td>
<td>INVALID_MAXIMUM_BITPOOL_VALUE</td>
<td>Maximum Bitpool Value is not valid</td>
</tr>
<tr>
<td>0xCE</td>
<td>Set Configuration Reconfigure</td>
<td>SBC</td>
<td>NOT_SUPPORTED_MAXIMUM_BITPOOL_VALUE</td>
<td>Maximum Bitpool Value is not supported</td>
</tr>
<tr>
<td>0xCF</td>
<td>Set Configuration Reconfigure</td>
<td>MPEG-1,2 Audio</td>
<td>INVALID_LAYER</td>
<td>None or multiple values have been selected for Layer</td>
</tr>
<tr>
<td>0xD0</td>
<td>Set Configuration Reconfigure</td>
<td>MPEG-1,2 Audio</td>
<td>NOT_SUPPORTED_LAYER</td>
<td>Layer is not supported</td>
</tr>
<tr>
<td>0xD1</td>
<td>Set Configuration Reconfigure</td>
<td>MPEG-1,2 Audio</td>
<td>NOT_SUPPORTED_CRC</td>
<td>CRC is not supported</td>
</tr>
<tr>
<td>0xD2</td>
<td>Set Configuration Reconfigure</td>
<td>MPEG-1,2 Audio</td>
<td>NOT_SUPPORTED_MPF</td>
<td>MPF-2 is not supported</td>
</tr>
<tr>
<td>0xD3</td>
<td>Set Configuration Reconfigure</td>
<td>MPEG-1,2 Audio</td>
<td>NOT_SUPPORTED_VBR</td>
<td>VBR is not supported</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Value</td>
<td>Message</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>0xD4</td>
<td>Set Configuration Reconfigure</td>
<td>MPEG-1,2 Audio ATRAC family</td>
<td>INVALID_BIT_RATE: None or multiple values have been selected for Bit Rate</td>
<td></td>
</tr>
<tr>
<td>0xD5</td>
<td>Set Configuration Reconfigure</td>
<td>MPEG-1,2 Audio MPEG-2,4 AAC ATRAC family</td>
<td>NOT_SUPPORTED_BIT_RATE: Bit Rate is not supported</td>
<td></td>
</tr>
<tr>
<td>0xD6</td>
<td>Set Configuration Reconfigure</td>
<td>MPEG-2,4 AAC</td>
<td>INVALID_OBJECT_TYPE: Either 1) Object type is not valid (b3-b0) or 2) None or multiple values have been selected for Object Type</td>
<td></td>
</tr>
<tr>
<td>0xD7</td>
<td>Set Configuration Reconfigure</td>
<td>MPEG-2,4 AAC</td>
<td>NOT_SUPPORTED_OBJECT_TYPE: Object Type is not supported</td>
<td></td>
</tr>
<tr>
<td>0xD8</td>
<td>Set Configuration Reconfigure</td>
<td>MPEG-2,4 AAC</td>
<td>INVALID_CHANNELS: None or multiple values have been selected for Channels</td>
<td></td>
</tr>
<tr>
<td>0xD9</td>
<td>Set Configuration Reconfigure</td>
<td>MPEG-2,4 AAC</td>
<td>NOT_SUPPORTED_CHANNELS: Channels is not supported</td>
<td></td>
</tr>
<tr>
<td>0xDA</td>
<td>Set Configuration Reconfigure</td>
<td>ATRAC family</td>
<td>INVALID_VERSION: Version is not valid</td>
<td></td>
</tr>
<tr>
<td>0xDB</td>
<td>Set Configuration Reconfigure</td>
<td>ATRAC family</td>
<td>NOT_SUPPORTED_VERSION: Version is not supported</td>
<td></td>
</tr>
<tr>
<td>0xDC</td>
<td>Set Configuration Reconfigure</td>
<td>ATRAC family</td>
<td>NOT_SUPPORTED_MAXIMUM_SUL: Maximum SUL is not acceptable for the Decoder in the SNK.</td>
<td></td>
</tr>
<tr>
<td>0xDD</td>
<td>Set Configuration Reconfigure</td>
<td>SBC</td>
<td>INVALID_BLOCK_LENGTH: None or multiple values have been selected for Block Length</td>
<td></td>
</tr>
<tr>
<td>0xDE-</td>
<td></td>
<td></td>
<td>RFD</td>
<td></td>
</tr>
<tr>
<td>0xDF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0xE0</td>
<td>Set Configuration Reconfigure</td>
<td>ALL</td>
<td>INVALID_CP_TYPE: The requested CP Type is not supported.</td>
<td></td>
</tr>
<tr>
<td>0xE1</td>
<td>Set Configuration Reconfigure Security Control</td>
<td>ALL</td>
<td>INVALID_CP_FORMAT: The format of Content Protection Service Capability/Content Protection Scheme Dependent Data is not correct.</td>
<td></td>
</tr>
<tr>
<td>0xE2-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0xFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5.3: Error Codes

5.2 L2CAP Interoperability Requirements

For the L2CAP layer, no additions to the requirements as stated in the GAVDP shall apply except for the following requirements.
5.2.1 Maximum Transmission Unit

The minimum MTU that a L2CAP implementation for this profile shall support is 335 bytes.

5.2.2 Flush Timeout

Application shall set the appropriate value for responding time to the flush timeout. A small finite value should be used to allow sufficient real-time throughput on the interface.

Remark: Flush timeout can be constrained by the ACL channels when the other profile(s) coexist with A2DP.

5.3 SDP Interoperability Requirements

This profile defines the following service records for the SRC and the SNK respectively.

The codes assigned to the mnemonics used in the Value column as well as the codes assigned to the attribute identifiers (if not specifically mentioned in the AttrID column) can be found in Bluetooth Assigned Numbers[8].

3 DH5 packet size equals 339 bytes including 4-byte L2CAP header.
<table>
<thead>
<tr>
<th>Item</th>
<th>Definition</th>
<th>Type</th>
<th>Value</th>
<th>AttrID</th>
<th>Status</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Class ID List</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Service Class #0</td>
<td>UUID</td>
<td></td>
<td>Audio Source</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Protocol Descriptor List</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Protocol #0</td>
<td>UUID</td>
<td></td>
<td>L2CAP</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Parameter #0 for Protocol #0</td>
<td>PSM</td>
<td>Uint 16</td>
<td>PSM= AVDTP</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Protocol #1</td>
<td>UUID</td>
<td></td>
<td>AVDTP</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Parameter #0 for Protocol #1</td>
<td>Version</td>
<td>Uint 16</td>
<td>0x0100*</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Bluetooth Profile Descriptor List</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Profile #0</td>
<td>UUID</td>
<td></td>
<td>Advanced Audio Distribution</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Parameter #0 for Profile #0</td>
<td>Version</td>
<td>Uint 16</td>
<td>0x0100**</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Supported Features</td>
<td>A2DP features flags</td>
<td>Uint 16</td>
<td>Bit 0 = Player Bit 1 = Microphone Bit 2 = Tuner Bit 3 = Mixer Bit 4-15 = RFA The bits for supported features are set to 1. Others are set to 0.</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provider Name</td>
<td>Displayable Text Name</td>
<td>String</td>
<td>Provider Name</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service Name</td>
<td>Displayable Text Name</td>
<td>String</td>
<td>Service-provider defined</td>
<td>O</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1 Indicating Version 1.0.

Figure 5.1: Service Record for Source
<table>
<thead>
<tr>
<th>Item</th>
<th>Definition</th>
<th>Type</th>
<th>Value</th>
<th>AttrID</th>
<th>Status</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Class ID List</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service Class #0</td>
<td>UUID</td>
<td>Audio Sink</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol Descriptor List</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol #0</td>
<td>UUID</td>
<td>L2CAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter #0 for Protocol #0</td>
<td>PSM</td>
<td>Uint 16</td>
<td>PSM= AVDTP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol #1</td>
<td>UUID</td>
<td>AVDTP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter #0 for Protocol #1</td>
<td>Version</td>
<td>Uint 16</td>
<td>0x0100*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bluetooth Profile Descriptor List</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profile #0</td>
<td>UUID</td>
<td>Advanced Audio Distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter #0 for Profile #0</td>
<td>Version</td>
<td>Uint 16</td>
<td>0x0100**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supported Features</td>
<td>A2DP features flags</td>
<td>Uint 16</td>
<td>Bit 0 = Headphone Bit 1 = Speaker Bit 2 = Recorder Bit 3 = Amplifier Bit 4-15 = RFA The bits for supported features are set to 1. Others are set to 0.</td>
<td></td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>Provider Name</td>
<td>Displayable Text Name</td>
<td>String</td>
<td>Provider Name</td>
<td></td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>Service Name</td>
<td>Displayable Text Name</td>
<td>String</td>
<td>Service-provider defined</td>
<td></td>
<td></td>
<td>O</td>
</tr>
</tbody>
</table>

*1 Indicating Version 1.0.

Figure 5.2: Service Record for Sink

5.4 Link Manager Interoperability Requirements

For the LMP layer, no additions to the requirements as stated in the GAVDP shall apply.

5.5 Link Controller Interoperability Requirements

For the Link Controller layer, the requirements as stated in the GAVDP shall apply. Furthermore, the following packets shall be supported in both **SNK** and **SRC**:

- DH3, DM3, DH5 and DM5

Note: Requirements described in GAVDP is described for **INT/ACP**. For **SRC**, it is mandatory to support both **INT** and **ACP**. For **SNK**, it is mandatory to support **ACP** and it is optional to support **INT**.
5.5.1 Class of Device

The Class of Device field shall be set to the following:

1. Mandatory to set the ‘Rendering’ bit for the SNK and the ‘Capturing’ bit for the SRC in the Service Class field.
2. Recommended to set ‘Audio/Video’ as Major Device class both for the SNK and the SRC.
3. Select the appropriate Minor Device class as defined in the Bluetooth Assigned Numbers[8].
6 Generic Access Profile Interoperability Requirements

The Advanced Audio Distribution profile requires compliance to the Generic Access Profile.

There is no change to the requirements as stated in the General Audio/Video Distribution Profile.

Note: Requirements described in GAVDP is described for INT/ACP. For SRC, it is mandatory to support both INT and ACP. For SNK, it is mandatory to support ACP and it is optional to support INT.
The Advanced Audio Distribution profile requires interoperability test. The details of the test strategy are described in [9]. Tested functionality is defined in [10].
8 References

[9] Bluetooth SIG, Specification of the Bluetooth System, TSS, version 1.0, Test Suite Structure (TSS) and Test Procedures (TP) for Advanced Audio Distribution Profile
[19] Bluetooth SIG, Conformance Test Bitstreams and Reference Implementation of SBC,

http://www.bluetooth.org
9 List of Figures

Figure 1.1: Profile Dependencies ... 10
Figure 2.1: Protocol Model ... 12
Figure 2.2: Examples of Configuration .. 13
Figure 3.1: Block Diagram of Audio Streaming Procedures and the Packet Format ... 17
Figure 4.1: Codec Specific Information Elements for SBC .. 20
Figure 4.2: Media payload format of SBC .. 23
Figure 4.3: Header format of media payload for SBC .. 24
Figure 4.4: Codec Specific Information Elements for MPEG-1,2 Audio 24
Figure 4.5: Codec Specific Information Elements for MPEG-2,4 AAC 28
Figure 4.6: Bit order for Bit rate field of MPEG-2,4 AAC 29
Figure 4.7: Codec Specific Information Elements for ATRAC family 31
Figure 4.8: Codec Specific Information Elements for Non-A2DP Codec 34
Figure 5.1: Service Record for Source .. 40
Figure 5.2: Service Record for Sink .. 41
Figure 12.1: Diagram of the decoder ... 56
Figure 12.2: CRC-check diagram. The addition blocks represent “exclusive or” gates ... 57
Figure 12.3: Flow Diagrams of the Synthesis Filter .. 66
Figure 12.4: Diagram of the encoder .. 67
Figure 12.5: Flow Diagrams of the Analysis Filter .. 68
Figure 13.1: Audio Streaming Set Up ... 73
Figure 13.2: Audio Streaming ... 74
10 List of Tables

Table 3.1: Application Layer Features ... 15
Table 3.2: Application Layer Feature to Procedure Mapping 15
Table 4.1: Supported codecs ... 18
Table 4.2: Sampling Frequency for SBC ... 20
Table 4.3: Channel Mode for SBC .. 20
Table 4.4: Block Length for SBC .. 21
Table 4.5: Number of Subbands for SBC .. 21
Table 4.6: Allocation Method for SBC ... 21
Table 4.7: Recommended sets of SBC parameters in the SRC device 22
Table 4.8: Layers for MPEG-1,2 Audio ... 25
Table 4.9: CRC Protection assignment for MPEG-1,2 Audio 25
Table 4.10: Channel Mode for MPEG-1,2 Audio .. 25
Table 4.11: Sampling Frequency for MPEG-1,2 Audio ... 26
Table 4.12: VBR support for MPEG-1,2 Audio ... 26
Table 4.13: Bit Rate Index for MPEG-1,2 Audio ... 27
Table 4.14: Object Type for MPEG-2,4 AAC .. 28
Table 4.15: Sampling Frequency field for MPEG-2,4 AAC 29
Table 4.16: Channels field for MPEG-2,4 AAC .. 29
Table 4.17: VBR support for MPEG-2,4 AAC ... 30
Table 4.18: Version for ATRAC family ... 31
Table 4.19: Channel Mode for ATRAC family .. 31
Table 4.20: Sampling Frequency for ATRAC family ... 32
Table 4.21: VBR support for ATRAC family .. 32
Table 4.22: Bit Rate Index for ATRAC family ... 33
Table 5.1: Roles in GAVDP ... 36
Table 5.2: AVDTP transport capabilities ... 36
Table 5.3: Error Codes ... 38
Table 12.1: Glossary ... 50
Table 12.2: Arithmetic operators ... 50
Table 12.3: Logical operators .. 51
Table 12.4: Relation operators ... 51
Table 12.5: Bitwise operators .. 51
Table 12.6: Assignment .. 51
Table 12.7: Mnemonics .. 51
Table 12.8: Constants ... 52
Table 12.9: Ranges ... 52
Table 12.10: Number notation .. 52
Table 12.11: Syntax of audio_frame .. 52
Table 12.12: Syntax of frame_header ... 53
Table 12.13: Syntax of scale_factors ... 53
Table 12.14: Syntax of audio_samples ... 53
Table 12.15: Syntax of padding ... 54
Table 12.16: sampling_frequency ... 54
Table 12.17: blocks ... 54
Table 12.18: channel_mode ... 54
Table 12.19: allocation_method ... 55
Table 12.20: subbands ... 55
Table 12.21: Offset table for four subbands ... 69
Table 12.22: Offset table for eight subbands .. 69
Table 12.23: Filter coefficients for four subbands ... 70
Table 12.24: Filter coefficients for eight subbands .. 70
11 Appendix A (Informative): Audio Streaming with Content Protection

This profile does not specify a particular content protection method rather it only provides support for various content protection methods. Specifically, AVDTP provides for the identification and negotiation of a particular content protection method via the Get Capabilities and Stream Configuration procedures.

The Security Control procedure in AVDTP provides for the exchange of the activated content protection method.
12 Appendix B: Technical Specification of SBC

12.1 Introduction

This appendix describes the technical specification of Low Complexity Subband Coding (SBC). SBC is an audio coding system specially designed for Bluetooth AV applications to obtain high quality audio at medium bit rates, and having a low computational complexity. SBC uses 4 or 8 subbands, an adaptive bit allocation algorithm, and simple adaptive block PCM quantizers. The SBC audio coding system is based on an earlier system, which was presented on [11]. Reference executables of both the encoder and the decoder of SBC codec are available in [19] for Win32 platform. For further information, refer to Section 9.4.3 in [9]. Note that source code of SBC neither encoder or decoder is available as part of the specification.

12.2 Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>frame</td>
<td>Basic unit that can be decoded independently</td>
</tr>
<tr>
<td>bit_count</td>
<td>A bit counter that keeps track of the number of bits</td>
</tr>
<tr>
<td>bitneed</td>
<td>A counter that represents the remaining bits during the bit allocation process</td>
</tr>
</tbody>
</table>

Table 12.1: Glossary

12.3 Symbols and Abbreviations

12.3.1 Arithmetic Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Addition</td>
</tr>
<tr>
<td>-</td>
<td>Subtraction (as a binary operator) or negation (as a unary operator)</td>
</tr>
<tr>
<td>++</td>
<td>Increment</td>
</tr>
<tr>
<td>--</td>
<td>Decrement</td>
</tr>
<tr>
<td>*</td>
<td>Multiplication</td>
</tr>
<tr>
<td>^</td>
<td>Power</td>
</tr>
<tr>
<td>/</td>
<td>Division</td>
</tr>
<tr>
<td>div</td>
<td>Integer division</td>
</tr>
<tr>
<td>mod</td>
<td>Modulo operation</td>
</tr>
<tr>
<td>[x]</td>
<td>Round x towards minus infinity</td>
</tr>
<tr>
<td>[x]</td>
<td>Round x towards plus infinity</td>
</tr>
<tr>
<td>sin(x)</td>
<td>Sine of x</td>
</tr>
<tr>
<td>cos(x)</td>
<td>Cosine of x</td>
</tr>
<tr>
<td>exp(x)</td>
<td>Exponential e^x</td>
</tr>
<tr>
<td>pow(x,y)</td>
<td>Exponential x^y</td>
</tr>
<tr>
<td>\sqrt{x}</td>
<td>Square root of x</td>
</tr>
</tbody>
</table>

Table 12.2: Arithmetic operators
12.3.2 Logical Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>&&</td>
<td>Logical AND</td>
</tr>
<tr>
<td>!</td>
<td>Logical NOT</td>
</tr>
</tbody>
</table>

Table 12.3: Logical operators

12.3.3 Relation Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>></td>
<td>Greater than</td>
</tr>
<tr>
<td>>=</td>
<td>Greater than or equal to</td>
</tr>
<tr>
<td><</td>
<td>Less than</td>
</tr>
<tr>
<td><=</td>
<td>Less than or equal to</td>
</tr>
<tr>
<td>==</td>
<td>Equal to</td>
</tr>
<tr>
<td>!=</td>
<td>Not equal to</td>
</tr>
<tr>
<td>max()</td>
<td>The maximum in the argument list</td>
</tr>
<tr>
<td>min()</td>
<td>The minimum in the argument list</td>
</tr>
<tr>
<td>x?y:z</td>
<td>If x is true then y else z</td>
</tr>
</tbody>
</table>

Table 12.4: Relation operators

12.3.4 Bitwise Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&</td>
<td>AND</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>>></td>
<td>Shift right with sign extension</td>
</tr>
<tr>
<td><<</td>
<td>Shift left with zero fill</td>
</tr>
</tbody>
</table>

Table 12.5: Bitwise operators

12.3.5 Assignment

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>Assignment operator</td>
</tr>
</tbody>
</table>

Table 12.6: Assignment

12.3.6 Mnemonics

The following mnemonics are defined to describe the different data types used in the coded bit-stream.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Char8</td>
<td>Character of 8 bits</td>
</tr>
<tr>
<td>UiMsbf</td>
<td>Unsigned integer, Most significant bit first</td>
</tr>
<tr>
<td>SiMsbf</td>
<td>Signed integer, Most significant bit first</td>
</tr>
<tr>
<td>BsMsbf</td>
<td>Bit-stream, Most significant bit first</td>
</tr>
<tr>
<td>PCM</td>
<td>Pulse Code Modulation</td>
</tr>
<tr>
<td>na</td>
<td>Not available</td>
</tr>
</tbody>
</table>

Table 12.7: Mnemonics
12.3.7 **Constants**

<table>
<thead>
<tr>
<th>Constant</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi)</td>
<td>3.14159265358...</td>
</tr>
</tbody>
</table>

Table 12.8: Constants

12.3.8 **Ranges**

<table>
<thead>
<tr>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>([0, 10])</td>
<td>A number in the range of 0 up to and including 10</td>
</tr>
<tr>
<td>([0, 10>)</td>
<td>A number in the range of 0 up to but excluding 10</td>
</tr>
</tbody>
</table>

Table 12.9: Ranges

12.3.9 **Number Notation**

<table>
<thead>
<tr>
<th>Number notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(%X)</td>
<td>Binary number representation (e.g. (%01111100))</td>
</tr>
<tr>
<td>($X)</td>
<td>Hexadecimal number representation (e.g. ($7C))</td>
</tr>
<tr>
<td>(X)</td>
<td>Numbers with no prefix use decimal representation (e.g. 124.43 or 1.2443E+02)</td>
</tr>
</tbody>
</table>

Table 12.10: Number notation

12.4 **Syntax**

```
audio_frame()
{
    frame_header()
    scale_factors()
    audio_samples()
    padding()
}
```

Table 12.11: Syntax of audio_frame
frame_header()
{
 syncword 8 BsMsbf
 sampling_frequency 2 UiMsbf
 blocks 2 UiMsbf
 channel_mode 2 UiMsbf
 allocation_method 1 UiMsbf
 subbands 1 UiMsbf
 bitpool 8 UiMsbf
 crc_check 8 UiMsbf

 if (channel_mode==JOINT_STEREO)
 {
 for (sb=0; sb<nrof_subbands-1; sb++)
 {
 join[sb] 1 UiMsbf
 }
 RFA 1 UiMsbf
 }
}

Table 12.12: Syntax of frame_header

scale_factors()
{
 for (ch=0; ch<nrof_channels; ch++)
 {
 for (sb=0; sb<nrof_subbands; sb++)
 {
 scale_factor[ch][sb] 4 UiMsbf
 }
 }
}

Table 12.13: Syntax of scale_factors

audio_samples()
{
 for (blk=0; blk<nrof_blocks; blk++)
 {
 for (ch=0; ch<nrof_channels; ch++)
 {
 for (sb=0; sb<nrof_subbands; sb++)
 {
 if (bits[ch][sb]!=0)
 {
 audio_sample[blk][ch][sb] 1..16 UiMsbf
 }
 }
 }
 }
}

Table 12.14: Syntax of audio_samples
Table 12.15: Syntax of padding

12.5 Semantics

12.5.1 Frame_header

syncword -- The 8 bit string %10011100 or $9C.

sampling_frequency -- Two bits to indicate the sampling frequency with which the stream has been encoded. The sampling frequency f_s is selected conforming to the table below.

<table>
<thead>
<tr>
<th>sampling_frequency</th>
<th>f_s (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>16</td>
</tr>
<tr>
<td>01</td>
<td>32</td>
</tr>
<tr>
<td>10</td>
<td>44.1</td>
</tr>
<tr>
<td>11</td>
<td>48</td>
</tr>
</tbody>
</table>

Table 12.16: sampling_frequency

blocks -- Two bits to indicate the block size with which the stream has been encoded. The block size nrof_blocks is selected conforming to the table below.

<table>
<thead>
<tr>
<th>blocks</th>
<th>nrof_blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>4</td>
</tr>
<tr>
<td>01</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>16</td>
</tr>
</tbody>
</table>

Table 12.17: blocks

channel_mode -- Two bits to indicate the channel mode that has been encoded. The variable nrof_channels is derived from this information.

<table>
<thead>
<tr>
<th>channel_mode</th>
<th>channel mode</th>
<th>nrof_channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>MONO</td>
<td>1</td>
</tr>
<tr>
<td>01</td>
<td>DUAL_CHANNEL</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>STEREO</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>JOINT_STEREO</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 12.18: channel_mode
allocation_method -- One bit to indicate the bit allocation method.

<table>
<thead>
<tr>
<th>Allocation_method</th>
<th>bit allocation method</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>LOUDNESS</td>
</tr>
<tr>
<td>1</td>
<td>SNR</td>
</tr>
</tbody>
</table>

Table 12.19: allocation_method

subbands -- One bit to indicate the number of subbands with which the stream has been encoded. The variable nrof_subbands is derived from this information.

<table>
<thead>
<tr>
<th>Subbands</th>
<th>nrof_subbands</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 12.20: subbands

bitpool -- This is a 8 bit integer to indicate the size of the bit allocation pool that has been used for encoding the stream. The value of the bitpool field shall not exceed $16 \times \text{nrof_subbands}$ for the MONO and DUAL_CHANNEL channel modes and $32 \times \text{nrof_subbands}$ for the STEREO and JOINT_STEREO channel modes.

crc_check -- This 8 bits parity-check word is used for error detection within the encoded stream.

RFA -- See definition Section 1.3.2.1.

join[sb] -- One bit to indicate whether joint stereo has been used in subband sb. Equals %1 if the subband has been encoded in joint stereo, and equals %0 if the subband has been encoded in stereo. Join[nrof_subbands-1] always equals %0.

12.5.2 scale_factors

scale_factor[ch][sb] -- Four bits containing the scale factor with which the samples of channel ch in subband sb shall be multiplied.

12.5.3 audio_samples

audio_samples[blk][ch][sb] -- These bits represent the audio sample of block blk in channel ch for subband sb.

12.5.4 padding

padding_bit -- Bits of value %0 that are used to pad the length of an audio_frame to an integral number of Bytes.
12.6 Decoding Processes

In Figure 12.1 the operation of the decoder is illustrated. On the basis of the scale factors the bit allocation is calculated. For the MONO and DUAL_CHANNEL the bit allocation is calculated for each channel independently (see Section 12.6.3.1). For the STEREO and JOINT_STEREO channel modes the allocation calculation for the two channels is combined (see Section 12.6.3.2). Then the number of quantization levels are derived for each subband, the subband samples are calculated and finally, via a polyphase synthesis filter, the PCM output is generated. This process is further described in this section.

![Diagram of the decoder](image)

12.6.1 Frame Header

The frame_header contains the configuration with which the bit-stream has been encoded.

12.6.1.1 CRC Check

To detect transmission errors, a CRC check is performed. All the bits of the frame_header, except for the syncword and the crc_check, plus all the bits of the scale_factors are included. The error detection method used is “CRC-8” with generator polynomial

\[G(X) = X^8 + X^4 + X^3 + X^2 + 1 \] (CRC-8).

The CRC method is depicted in the CRC-check diagram given in Figure 12.2. The initial state of the shift register is $0F$. All bits included in the CRC check are input to the circuit shown in the figure. After each bit is input, the shift register is shifted by one bit. After the last shift operation, the outputs $b_{n-1}...b_0$ constitute a word to be compared with the CRC-check word in the stream. If the words are not identical, a transmission error has occurred in the fields on which the CRC check has been applied. To avoid annoying distortions, application of a concealment technique, such as muting of the actual frame or repetition of the previous frame is recommended.
12.6.2 Scale Factors

The actual scaling factor for channel \(ch \) and subband \(sb \) is calculated according to

\[
scalefactor[ch][sb] = \text{pow}(2.0, (scale _ factor[ch][sb] + 1)).
\]

12.6.3 Bit Allocation

12.6.3.1 Mono and Dual_Channel Bit Allocation

For these two channel modes the bit allocation is calculated for each channel independently and is derived from the scale factors.

In the first step, bitneed values are derived from the scale factors according to the following pseudo code for each channel independently. The tables offset4 and offset8 are in Section 12.8.

Figure 12.2: CRC-check diagram. The addition blocks represent “exclusive or” gates.
Then the maximum bitneed index is searched for

```c
if (allocation_method==SNR)
{
    for (sb=0; sb<nrof_subbands; sb++)
    {
        bitneed[ch][sb] = scale_factor[ch][sb];
    }
}
else
{
    for (sb=0; sb<nrof_subbands; sb++)
    {
        if (scale_factor[ch][sb] == 0)
        {
            bitneedn[ch][sb] = -5;
        }
        else
        {
            if (nrof_subbands == 4)
            {
                loudness = scale_factor[ch][sb] – offset4[sampling_frequency][sb];
            }
            else
            {
                loudness = scale_factor[ch][sb] – offset8[sampling_frequency][sb];
            }
            if (loudness > 0)
            {
                bitneed[ch][sb] = loudness div 2;
            }
            else
            {
                bitneed[ch][sb] = loudness;
            }
        }
    }
}
```

max_bitneed=0;
for (sb=0; sb<nrof_subbands; sb++)
 if (bitneed[ch][sb] > max_bitneed)
 max_bitneed=bitneed[ch][sb];
Next an iterative process finds out how many bitslices fit into the bitpool

```c
bitcount=0;
slicecount=0;
bitslice=max_bitneed+1; /* init just above the largest sf */
do{
    bitslice--;
    bitcount+=slicecount;
    slicecount=0;
    for (sb=0; sb<nrof_subbands; sb++)
    {
        if(bitneed[ch][sb]<bitslice+2)
            bits[ch][sb]=0;
        else
            bits[ch][sb]=min(bitneed[ch][sb]-bitslice, 16);
    }
} while (bitcount+slicecount<bitpool);
if (bitcount+slicecount==bitpool)
{
    bitcount+=slicecount;
    bitslice--;
}
```

Thereafter, bits are distributed until the last bitslice is reached

```c
for (sb=0; sb<nrof_subbands; sb++)
    if(bitneed[ch][sb]<bitslice+2)
        bits[ch][sb]=0;
    else
        bits[ch][sb]=min(bitneed[ch][sb]-bitslice, 16);
```
The remaining bits are allocated starting at subband 0

```
while(bitcount < bitpool && sb < nrof_subbands)
{
    if((bits[ch][sb]>=2)&&(bits[ch][sb]<16))
    {
        bits[ch][sb]++;
        bitcount++;
    }
    else if((bitneed[ch][sb]==bitslice+1)&&(bitpool>bitcount+1))
    {
        bits[ch][sb]=2;
        bitcount+=2;
    }
    sb++;
}
while(bitcount < bitpool && sb < nrof_subbands)
{
    if (bits[ch][sb] < 16)
    {
        bits[ch][sb]++;
        bitcount++;
    }
    sb++;
}
```
12.6.3.2 Stereo and Joint_Stereo Bit Allocation

For these two channel modes the bit allocation calculation for the two channels is combined and it is derived from the scale factors of the both channels.

In the first step bitneed values are calculated from the scale factors according to the following pseudo code. The tables offset4 and offset8 are in Section 12.8.

```
if (allocation_method==SNR)
{
    for (ch=0;ch<2;ch++)
    {
        for (sb=0;sb<nrof_subbands;sb++)
        {
            bitneed[ch][sb] = scale_factor[ch][sb];
        }
    }
}
else
{
    for (ch=0;ch<2;ch++)
    {
        for (sb=0;sb<nrof_subbands;sb++)
        {
            if (scale_factor[ch][sb] == 0)
            {
                bitneed[ch][sb] = -5;
            }
            else
            {
                if (nrof_subbands == 4)
                {
                    loudness = scale_factor[ch][sb] – offset4[sampling_frequency][sb];
                }
                else
                {
                    loudness = scale_factor[ch][sb] – offset8[sampling_frequency][sb];
                }
                if (loudness > 0)
                {
                    bitneed[ch][sb] = loudness div 2;
                }
                else
                {
                    bitneed[ch][sb] = loudness;
                }
            }
        }
    }
}
```

Then the maximum bitneed index is searched for

```c
max_bitneed=0;
for (ch=0;ch<2;ch++)
    for (sb=0;sb<nrof_subbands;sb++)
        if (bitneed[ch][sb] > max_bitneed)
            max_bitneed=bitneed[ch][sb];
```

Next an iterative process finds out how many bitslices fit into the bitpool

```c
bitcount=0;
slicecount=0;
bitslice=max_bitneed+1; /* init just above the largest sf */
do{
    bitslice--;
    bitcount+=slicecount;
    slicecount=0;
    for (ch=0;ch<2;ch++)
        for (sb=0;sb<nrof_subbands;sb++)
            if((bitneed[ch][sb]>bitslice+1)&&(bitneed[ch][sb]<bitslice+16))
                slicecount++;
            else if(bitneed[ch][sb]==bitslice+1)
                slicecount+=2;
} while (bitcount+slicecount<bitpool);
if (bitcount+slicecount==bitpool)
    {
        bitcount+=slicecount;
        bitslice--;
    }
```

Thereafter bits are distributed until the last bitslice is reached

```c
for (ch=0;ch<2;ch++)
{
    for (sb=0;sb<nrof_subbands;sb++)
        {
            if(bitneed[ch][sb]<bitslice+2)
            {
                bits[ch][sb]=0;
            }
            else
            {
                bits[ch][sb]=min(bitneed[ch][sb]-bitslice,16);
            }
        }
}
```
The remaining bits are allocated starting with subband 0 of the first channel.

```c
ch=0; sb=0;
while(bitcount < bitpool && sb < nrof_subbands)
{
    if((bits[ch][sb]>=2)&&(bits[ch][sb]<16))
    {
        bits[ch][sb]++;
        bitcount++;
    }
    else if((bitneed[ch][sb]==bitslice+1)&&(bitpool>bitcount+1))
    {
        bits[ch][sb]=2;
        bitcount+=2;
    }
    if (ch == 1)
    {
        ch = 0;
        sb++;
    }
    else
    {
        ch = 1;
    }
}
ch=0; sb=0;
while(bitcount < bitpool && sb < nrof_subbands)
{
    if (bits[ch][sb] < 16)
    {
        bits[ch][sb]++;
        bitcount++; 
    }
    if (ch == 1)
    {
        ch = 0;
        sb++;
    }
    else
    {
        ch = 1;
    }
}
```
12.6.4 Reconstruction of the Subband Samples

```
for (ch=0; ch<nrof_channels; ch++)
    for (sb=0; sb<nrof_subbands; sb++)
        levels[ch][sb] = pow(2.0, bits[ch][sb]) - 1;
for (blk=0; blk<nrof_blocks; blk++)
{
    for (ch=0; ch<nrof_channels; ch++)
    {
        for (sb=0; sb<nrof_subbands; sb++)
        {
            if ((channel_mode==JOINT_STEREO) && (join[sb]==1))
            {
                sb_sample[blk][ch][sb] = scalefactor[ch][sb] * ((audio_sample[blk][ch][sb] * 2.0 + 1.0) / levels[ch][sb] - 1.0);
            }
        }
    }
}
```

12.6.5 Joint Processing

For the JOINT_STEREO channel mode, the subbands that are transmitted in joint stereo mode shall be calculated according to:

```
for (blk=0; blk<nrof_blocks; blk++)
{
    for (sb=0; sb<nrof_subbands; sb++)
    {
        if (channel_mode==JOINT_STEREO) & & (join[sb]==1))
        {
            sb_sample[blk][0][sb] = sb_sample[blk][0][sb] + sb_sample[blk][1][sb];
            sb_sample[blk][1][sb] = sb_sample[blk][0][sb] - 2 * sb_sample[blk][1][sb];
        }
    }
}
```

12.6.6 Synthesis Filter

Synthesis of the decoded output is calculated for each channel separately. For each block of decoded subband samples the synthesis filter shall be applied to calculate nrof_subbands consecutive audio samples. The synthesis filter is a polyphase filterbank according to

\[
 h_m[n] = h_p[n] \cos \left(\left(m + \frac{1}{2} \right) \cdot \left(n + \frac{M}{2} \right) \cdot \frac{\pi}{M} \right), \quad m = [0, M - 1], \quad n = [0, L - 1],
\]
with $M=n_{\text{rof_subbands}}$ and $L=10*n_{\text{rof_subbands}}$. The prototype filters (h_p) for both $M=4$ and $M=8$ are in Section 12.8. This synthesis filterbank has the same structure as the one that is used in [12].

For more details the reader is refered to Section 2.4.3.2.2, "Synthesis subband filter" in [12]. The $\text{sb_sample[blk][ch][sb]}$ values, as calculated in Section 12.6.4, "Reconstruction of the Subband Samples" and Section 12.6.5, "Joint Processing", are the input of the synthesis filter. The output of the synthesis filter are the decoded audio output samples. A detailed filter block diagram can be found in Figure 12.3.
SBC Synthesis for 4 subbands

START

Input 4 New Subband Samples
for i=0 to 3 do
S[i] = next_input_subband_sample

Shifting
for i=79 down to 8 do
V[i] = V[i-8]

Matrixing
for k=0 to 7 do
for i=0 to 3 do
V[k] = sum(N[k][i]*S[i])
N[k][i] = cos[(i+0.5)(k+2pi/4)]

Build a 40 values vector U
for i=0 to 4 do
for j=0 to 3 do
U[i*8+j] = V[i*16+j]
U[i*8+4+j] = V[i*16+12+j]

Window by 40 coefficients
Produce vector W
for i=0 to 39 do
W[i] = U[i]*D[i] (D[i]: filter coeffs table 12-23 multiplied by -4)

Calculate 4 audio samples
for i=0 to 3 do
for i=0 to 9 do
X[i] = sum(W[i*4+j])

Output 4 reconstructed Audio Samples
for i=0 to 3 do
next_output_audio_sample = X[i]

END

SBC Synthesis for 8 subbands

START

Input 8 New Subband Samples
for i=0 to 7 do
S[i] = next_input_subband_sample

Shifting
for i=159 down to 16 do
V[i] = V[i-16]

Matrixing
for k=0 to 15 do
for i=0 to 7 do
V[k] = sum(N[k][i]*S[i])
N[k][i] = cos[(i+0.5)(k+4pi/8)]

Build a 80 values vector U
for i=0 to 4 do
for j=0 to 7 do
U[i*16+j] = V[i*32+j]
U[i*16+8+j] = V[i*32+24+j]

Window by 80 coefficients
Produce vector W
for i=0 to 79 do
W[i] = U[i]*D[i] (D[i]: filter coeffs table 12-24 multiplied by -8)

Calculate 8 audio samples
for i=0 to 7 do
for i=0 to 9 do
X[i] = sum(W[i*8+j])

Output 8 reconstructed Audio Samples
for i=0 to 7 do
next_output_audio_sample = X[i]

END

These Flow Diagrams are adapted from Figure A.2 and paragraph 2.4.3.2.2 in ISO/IEC 11172-3

Figure 12.3: Flow Diagrams of the Synthesis Filter

12.7 Encoding Processes

In Figure 12.4 the operation of the encoder is illustrated. Via a polyphase analysis filter the input PCM is split into subband signals. For each subband a scale factor is
calculated. On the basis of the scale factors the bit allocation, and from there the levels are derived for each subband. Then the subband samples are scaled and quantized and finally, a bitstream is generated. This process is further described in this section.

Figure 12.4: Diagram of the encoder

12.7.1 Analysis Filter

Analysis of the input PCM is calculated for each channel separately. For each block of nrof_subbands consecutive PCM samples the analysis filter is applied to calculate nrof_subbands subband samples. The analysis filter is a polyphase filterbank according to

\[
 h_m[n] = h_p[n] \cos \left(\frac{\left(m + \frac{1}{2} \right) \left(n - \frac{M}{2} \right) \pi}{M} \right), \quad m = [0, M-1], n = [0, L-1],
\]

with M=nrof_subbands and L=10*nrof_subbands. The prototype filters for both M=4 and M=8 are in Section 12.8. This analysis filterbank has the same structure as the one that is used in [12].

A detailed filter block diagram can be found in Figure 12.5.
SBC Analysis for 4 subbands

START

Input 4 New Audio Samples
for i=39 down to 4 do
 X[i] = X[i-4]
for i=3 down to 0 do
 X[i] = next_input_audio_sample

Windowing by 40 coefficients
Produce Vector Z
for i=0 to 39 do
 Z[i] = C[i]*X[i]
(C[i]: filter coeffs table 1-23)

Partial Calculation
for i=0 to 7 do
 for k=0 to 4 do
 Y[i] = sum(Z[i+k*8])

Calculate 4 subband samples by Matrixing
for i=0 to 3 do
 for k=0 to 7 do
 S[i] = sum(M[i][k] * Y[k])
 M[i][k] = cos((i+0.5)*(k-2)*pi/8)

Output 4 Subband Samples
for i=0 to 3 do
 next_output_subband_sample = S[i]

END

SBC Analysis for 8 subbands

START

Input 8 New Audio Samples
for i=79 down to 8 do
 X[i] = X[i-8]
for i=7 down to 0 do
 X[i] = next_input_audio_sample

Windowing by 80 coefficients
Produce Vector Z
for i=0 to 79 do
 Z[i] = C[i]*X[i]
(C[i]: filter coeffs table 12-24)

Partial Calculation
for i=0 to 15 do
 for k=0 to 4 do
 Y[i] = sum(Z[i+k*16])

Calculate 8 subband samples by Matrixing
for i=0 to 7 do
 for k=0 to 15 do
 S[i] = sum(M[i][k] * Y[k])
 M[i][k] = cos((i+0.5)*(k-4)*pi/8)

Output 8 Subband Samples
for i=0 to 7 do
 next_output_subband_sample = S[i]

END

These Flow Diagrams are adapted from Figure C.4 and paragraph C.1.3 in ISO/IEC 11172-3

Figure 12.5: Flow Diagrams of the Analysis Filter

Release Date: 22 May 2003
12.7.2 Scale Factors

For each subband a scale factor is calculated by taking the next higher scale factor value of the maximum absolute value in each subband. The scale factor values are defined in Section 12.6.2.

12.7.3 Joint_Stereo Channel Mode Operation

For the JOINT_STEREO channel mode operation a slightly different procedure is applied. From the L and R subband signals sum and difference subband signals are derived and scale factors are calculated for these sum and difference subband signals. A simple criterion may be used to determine whether the L and R subband signals are transmitted or the sum and difference subband signals, e.g., if the sum of the scale factors of L and R is larger than the sum of the scale factors of the sum and difference signals, the subband is coded using joint coding.

12.7.4 Bit Allocation

The bit allocation is exactly the same for the encoder and the decoder, and is described in Section 12.6.3.

12.7.5 Quantization

The subband samples are normalized and quantized using the following formula.

\[
\text{quantized}_{\text{sb}}_\text{sample[blk][ch][sb]} = \lfloor ((\text{sb}_\text{sample[blk][ch][sb]} / \text{scalefactor[ch][sb]} + 1.0) * \text{levels[ch][sb]}) / 2.0 \rfloor
\]

12.8 Tables

In the case that the LOUDNESS bit allocation method is used in the bit allocation process, the next two tables are used.

<table>
<thead>
<tr>
<th>offset4</th>
<th>fs = 16000</th>
<th>fs = 32000</th>
<th>fs = 44100</th>
<th>fs = 48000</th>
</tr>
</thead>
<tbody>
<tr>
<td>sb = 0</td>
<td>-1</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>sb = 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>sb = 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>sb = 3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 12.21: Offset table for four subbands

<table>
<thead>
<tr>
<th>offset8</th>
<th>fs = 16000</th>
<th>fs = 32000</th>
<th>fs = 44100</th>
<th>fs = 48000</th>
</tr>
</thead>
<tbody>
<tr>
<td>sb = 0</td>
<td>-2</td>
<td>-3</td>
<td>-4</td>
<td>-4</td>
</tr>
<tr>
<td>sb = 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>sb = 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>sb = 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>sb = 4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>sb = 5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>sb = 6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>sb = 7</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 12.22: Offset table for eight subbands
For the analysis and synthesis filters the filter coefficients are defined in the next two tables. The tables shall be read row-wise.

<table>
<thead>
<tr>
<th>Proto_4_40</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00000000E+00 5.36548976E-04 1.49188357E-03 2.73370904E-03</td>
</tr>
<tr>
<td>3.83720193E-03 3.89205149E-03 1.86581691E-03 -3.06012286E-03</td>
</tr>
<tr>
<td>1.09137620E-02 2.04385087E-02 2.88757392E-02 3.21939290E-02</td>
</tr>
<tr>
<td>2.58767811E-02 6.13245186E-03 -2.88217274E-02 -7.76463494E-02</td>
</tr>
<tr>
<td>1.35932747E-01 1.94987841E-01 2.46636662E-01 2.81828203E-01</td>
</tr>
<tr>
<td>2.94315332E-01 2.81828203E-01 2.46636662E-01 1.94987841E-01</td>
</tr>
<tr>
<td>-1.35932747E-01 -7.76463494E-02 -2.88217274E-02 6.13245186E-03</td>
</tr>
<tr>
<td>2.58767811E-02 3.21939290E-02 2.88757392E-02 2.04385087E-02</td>
</tr>
<tr>
<td>-1.09137620E-02 -3.06012286E-03 1.86581691E-03 3.89205149E-03</td>
</tr>
<tr>
<td>3.83720193E-03 2.73370904E-03 1.49188357E-03 5.36548976E-04</td>
</tr>
</tbody>
</table>

Table 12.23: Filter coefficients for four subbands

<table>
<thead>
<tr>
<th>Proto_8_80</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00000000E+00 1.56575398E-04 3.43256425E-04 5.54620202E-04</td>
</tr>
<tr>
<td>8.23919506E-04 1.13992507E-03 1.47640169E-03 1.78371725E-03</td>
</tr>
<tr>
<td>2.01182542E-03 2.10371989E-03 1.99454554E-03 1.61656283E-03</td>
</tr>
<tr>
<td>9.02154502E-04 -1.78805361E-04 -1.64973098E-03 -3.49717454E-03</td>
</tr>
<tr>
<td>5.85949473E-03 8.02941163E-03 1.04584443E-02 1.27472335E-02</td>
</tr>
<tr>
<td>1.46525263E-02 1.59045603E-02 1.62208471E-02 1.53184106E-02</td>
</tr>
<tr>
<td>1.29371806E-02 8.85757540E-03 2.92408442E-03 -4.91578024E-03</td>
</tr>
<tr>
<td>-1.46404076E-02 -2.61098752E-02 -3.90751381E-02 -5.31873032E-02</td>
</tr>
<tr>
<td>6.79989431E-02 8.29847578E-02 9.75753918E-02 1.11966689E-01</td>
</tr>
<tr>
<td>1.23264548E-01 1.33264415E-01 1.40753505E-01 1.45389847E-01</td>
</tr>
<tr>
<td>1.46955068E-01 1.45389847E-01 1.40753505E-01 1.33264415E-01</td>
</tr>
<tr>
<td>1.23264548E-01 1.11966689E-01 9.75753918E-02 8.29847578E-02</td>
</tr>
<tr>
<td>-6.79989431E-02 -5.31873032E-02 -3.90751381E-02 -2.61098752E-02</td>
</tr>
<tr>
<td>-1.46404076E-02 -4.91578024E-03 2.92408442E-03 8.85757540E-03</td>
</tr>
<tr>
<td>1.29371806E-02 1.53184106E-02 1.62208471E-02 1.59045603E-02</td>
</tr>
<tr>
<td>1.46525263E-02 1.27472335E-02 1.04584443E-02 8.02941163E-02</td>
</tr>
<tr>
<td>-5.65949473E-03 -3.49717454E-02 -1.64973098E-03 -1.78805361E-02</td>
</tr>
<tr>
<td>9.02154502E-04 1.61656283E-03 1.99454554E-03 2.10371989E-03</td>
</tr>
<tr>
<td>2.01182542E-03 1.78371977E-03 1.47640169E-03 1.13992507E-03</td>
</tr>
<tr>
<td>8.23919506E-04 5.54620202E-04 3.43256425E-04 1.56575398E-04</td>
</tr>
</tbody>
</table>

Table 12.24: Filter coefficients for eight subbands

12.9 Calculation of Bit Rate and Frame Length

Bit Rate (bit_rate) is calculated using the following equation:

\[
\text{bit_rate} = 8 \times \text{frame_length} \times f_s / \text{nrof_subbands} / \text{nrof_blocks},
\]

where \(f_s \), \text{nrof_subbands} and \text{nrof_blocks} denote sampling frequency, number of subbands and number of blocks, respectively. Bit Rate is expressed in kb/s, because \(f_s \) is expressed in kHz. The Frame Length (frame_length) is expressed in bytes as

\[
\text{frame_length} = 4 + (4 \times \text{nrof_subbands} \times \text{nrof_channels}) / 8 + \left[\text{nrof_blocks} \times \text{nrof_channels} \times \text{bitpool} / 8 \right].
\]
for the MONO and DUAL_CHANNEL channel modes, and

\[
\text{frame_length} = 4 + \left(\frac{4 \times \text{nrof_subbands} \times \text{nrof_channels}}{8} \right) \\
+ \left\lceil \frac{(\text{join} \times \text{nrof_subbands} + \text{nrof_blocks} \times \text{bitpool})}{8} \right\rceil
\]

for the STEREO and JOINT_STEREO channel modes.

Here, \text{nrof_channels} and \text{bitpool} denote number of channels and bitpool value, respectively. When joint stereo is used, \text{join} = 1, otherwise 0. For reference, see Section 12.5.
13 Appendix C (Informative): Signalling Flows

This section contains an example of typical signalling procedures defined in AVDTP for audio streaming setup. This section is informative only. For details, refer to GAVDP[3] and AVDTP[4]. In this example, the SRC is assumed to be the INT, while the SNK to be the ACP.

13.1 Audio Streaming Set Up

The initial states of both devices are <IDLE>.

The SRC initiates Stream Endpoint (SEP) Discovery procedure. This procedure serves to return the media type and SEID for each stream end-point. The SRC finds the audio-type stream end-point.

Then, Get Capabilities procedure is initiated to collect service capabilities of the SNK. There are two kinds of service capabilities; one is an application service capability and the other is a transport service capability. The application service capability for A2DP consists of audio codec capability and content protection capability. Regarding the transport service capability, refer to Section 5.4 in AVDTP[4].

Based on collected SEP information and service capabilities, the SRC determines the most suitable audio streaming parameters (codec, content protection and transport service) for the SNK and the SRC itself. Then, SRC requests the SNK to configure the audio parameters of the SNK by using the Stream Configuration procedure. The SRC also configures the audio parameters of itself.

Then, L2CAP channels are established as defined in the Stream Establishment procedure. Finally, the states of both devices are set at <OPEN>.
13.2 Audio Streaming

The SRC initiates Start Streaming procedure by a user initiated action or an internal event. The states of both devices are changed from <OPEN> to <STREAMING>. Audio streaming is started after this procedure is completed.
Figure 13.2: Audio Streaming
14 Appendix D: Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/V</td>
<td>Audio/Video</td>
</tr>
<tr>
<td>A2DP</td>
<td>Advanced Audio Distribution Profile</td>
</tr>
<tr>
<td>ACP</td>
<td>Acceptor</td>
</tr>
<tr>
<td>AVDTP</td>
<td>Audio/Video Distribution Transport Protocol</td>
</tr>
<tr>
<td>AVRCP</td>
<td>Audio/Video Remote Control Profile</td>
</tr>
<tr>
<td>CP_Type</td>
<td>Content Protection Type</td>
</tr>
<tr>
<td>CRC</td>
<td>Cyclic Redundancy Check</td>
</tr>
<tr>
<td>GAP</td>
<td>Generic Access Profile</td>
</tr>
<tr>
<td>GAVDP</td>
<td>Generic Audio/Video Distribution Profile</td>
</tr>
<tr>
<td>ICS</td>
<td>Implementation Conformance Statement</td>
</tr>
<tr>
<td>IETF</td>
<td>Internet Engineering Task Force</td>
</tr>
<tr>
<td>INT</td>
<td>Initiator</td>
</tr>
<tr>
<td>LM</td>
<td>Link Manager</td>
</tr>
<tr>
<td>LSB</td>
<td>Least Significant Bit (Byte)</td>
</tr>
<tr>
<td>MPEG</td>
<td>Moving Picture Expert Group</td>
</tr>
<tr>
<td>MSB</td>
<td>Most Significant Bit (Byte)</td>
</tr>
<tr>
<td>MTU</td>
<td>Maximum Transmission Unit</td>
</tr>
<tr>
<td>PSM</td>
<td>Protocol/Service Multiplexer</td>
</tr>
<tr>
<td>QoS</td>
<td>Quality of Service</td>
</tr>
<tr>
<td>RFA</td>
<td>Reserved for Future Additions</td>
</tr>
<tr>
<td>RFD</td>
<td>Reserved for Future Definition</td>
</tr>
<tr>
<td>RTP</td>
<td>Real-time Transport Protocol</td>
</tr>
<tr>
<td>SBC</td>
<td>Low Complexity Subband Codec</td>
</tr>
<tr>
<td>SDP</td>
<td>Service Discovery Protocol</td>
</tr>
<tr>
<td>SEID</td>
<td>Stream End Point Identifier</td>
</tr>
<tr>
<td>SEP</td>
<td>Stream End Point</td>
</tr>
<tr>
<td>SNK</td>
<td>Sink</td>
</tr>
<tr>
<td>SRC</td>
<td>Source</td>
</tr>
<tr>
<td>TSS</td>
<td>Test Suite Structure</td>
</tr>
<tr>
<td>VDP</td>
<td>Video Distribution Profile</td>
</tr>
</tbody>
</table>