Experience More

SPECIFICATION OF THE Bluetooth System

Supplement to the Bluetooth Core Specification

Version 2

Adoption Date: 24 July 2012
Disclaimer and Copyright Notice

The copyright in these specifications is owned by the Promoter Members of Bluetooth SIG, Inc. ("Bluetooth SIG"). Use of these specifications and any related intellectual property (collectively, the "Specifications"), is governed by the Promoters Membership Agreement among the Promoter Members and Bluetooth SIG (the "Promoters Agreement"), certain membership agreements between Bluetooth SIG and its Adopter and Associate Members (the "Membership Agreements") and the Bluetooth Specification Early Adopters Agreements ("1.2 Early Adopters Agreements") among Early Adopter members of the unincorporated Bluetooth special interest group and the Promoter Members (the "Early Adopters Agreement"). Certain rights and obligations of the Promoter Members under the Early Adopters Agreements have been assigned to Bluetooth SIG by the Promoter Members.

Use of the Specification by anyone who is not a member of Bluetooth SIG or a party to an Early Adopters Agreement (each such person or party, a “Member”), is prohibited. The legal rights and obligations of each Member are governed by their applicable Membership Agreement, Early Adopters Agreement or Promoters Agreement. No license, express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein.

Any use of the Specification not in compliance with the terms of the applicable Membership Agreement, Early Adopters Agreement or Promoters Agreement is prohibited and any such prohibited use may result in termination of the applicable Membership Agreement or Early Adopters Agreement and other liability permitted by the applicable agreement or by applicable law to Bluetooth SIG or any of its members for patent, copyright and/or trademark infringement.

THE SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, SATISFACTORY QUALITY, OR REASONABLE SKILL OR CARE, OR ANY WARRANTY ARISING OUT OF ANY COURSE OF DEALING, USAGE, TRADE PRACTICE, PROPOSAL, SPECIFICATION OR SAMPLE.

Each Member hereby acknowledges that products equipped with the Bluetooth® technology ("Bluetooth® Products") may be subject to various regulatory controls under the laws and regulations of various governments worldwide. Such laws and regulatory controls may govern, among other things, the combination, operation, use, implementation and distribution of Bluetooth® Products. Examples of such laws and regulatory controls include, but are not limited to, airline regulatory controls, telecommunications regulations, technology transfer controls and health and safety regulations. Each Member is solely responsible for the compliance by their Bluetooth® Products with any such laws and regulations and for obtaining any and all required authorizations, permits, or licenses for their Bluetooth® Products related to such regulations within the applicable jurisdictions. Each Member acknowledges that nothing in the Specification provides any information or assistance in connection with securing such compliance, authorizations or licenses. NOTHING IN THE SPECIFICATION CREATES ANY WARRANTIES, EITHER EXPRESS OR IMPLIED, REGARDING SUCH LAWS OR REGULATIONS.

ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHTS OR FOR NONCOMPLIANCE WITH LAWS, RELATING TO USE OF THE SPECIFICATION IS EXPRESSLY DISCLAIMED. BY USE OF THE SPECIFICATION, EACH MEMBER EXPRESSLY WAIVES ANY CLAIM AGAINST BLUETOOTH SIG AND ITS PROMOTER MEMBERS RELATED TO USE OF THE SPECIFICATION.

Bluetooth SIG reserves the right to adopt any changes or alterations to the Specification as it deems necessary or appropriate.

Copyright © 2012

Ericsson AB,
Lenovo, (Singapore) Pte. Ltd
Intel Corporation,
Microsoft Corporation,
Motorola, Mobility Inc.,
Nokia Corporation,
Toshiba Corporation

*Third-party brands and names are the property of their respective owners.

24 July 2012
Part A
DATA TYPES SPECIFICATION

1 Data Types Definitions and Formats .. 9
 1.1 Service UUID .. 10
 1.2 Local Name .. 12
 1.3 Flags ... 13
 1.4 Manufacturer Specific Data ... 15
 1.5 TX Power Level ... 16
 1.6 Secure Simple Pairing Out of Band (OOB) 17
 1.7 Security Manager Out of Band (OOB) .. 19
 1.8 Security Manager TK Value ... 20
 1.9 Slave Connection Interval Range .. 21
 1.10 Service Solicitation ... 23
 1.11 Service Data .. 24
 1.12 Appearance .. 25
 1.13 Public Target Address ... 26
 1.14 Random Target Address ... 27

2 Examples ... 28
 2.1 Example Extended Inquiry Response ... 28
 2.2 Example Advertising Data .. 29

Part B
COMMON PROFILE AND SERVICE ERROR CODES

1 Overview of Common Profile and Service Error Codes 34
 1.1 Usage Descriptions ... 34
 1.2 List of Error Codes ... 34

2 Common Profile and Service Error Code Descriptions 35
 2.1 Out of Range (0xFF) ... 35
 2.2 Procedure Already in Progress (0xFE) 35
 2.3 Client Characteristic Configuration Descriptor Improperly Configured (0xFD) ... 35
DATA TYPES SPECIFICATION
CONTENTS

1 Data Types Definitions and Formats ... 9
 1.1 Service UUID .. 10
 1.1.1 Description .. 10
 1.1.2 Format .. 10
 1.2 Local Name ... 12
 1.2.1 Description .. 12
 1.2.2 Format .. 12
 1.3 Flags .. 13
 1.3.1 Description .. 13
 1.3.2 Format .. 13
 1.4 Manufacturer Specific Data .. 15
 1.4.1 Description .. 15
 1.4.2 Format .. 15
 1.5 TX Power Level .. 16
 1.5.1 Description .. 16
 1.5.2 Format .. 16
 1.6 Secure Simple Pairing Out of Band (OOB) .. 17
 1.6.1 Description .. 17
 1.6.2 Format .. 17
 1.7 Security Manager Out of Band (OOB) ... 19
 1.7.1 Description .. 19
 1.7.2 Format .. 19
 1.8 Security Manager TK Value ... 20
 1.8.1 Description .. 20
 1.8.2 Format .. 20
 1.9 Slave Connection Interval Range ... 21
 1.9.1 Description .. 21
 1.9.2 Format .. 22
 1.10 Service Solicitation .. 23
 1.10.1 Description ... 23
 1.10.2 Format .. 23
 1.11 Service Data .. 24
 1.11.1 Description ... 24
 1.11.2 Format .. 24
 1.12 Appearance ... 25
 1.12.1 Description ... 25
 1.12.2 Format .. 25
1.13 Public Target Address ... 26
 1.13.1 Description ... 26
 1.13.2 Format ... 26

1.14 Random Target Address ... 27
 1.14.1 Description ... 27
 1.14.2 Format ... 27

2 Examples ... 28
 2.1 Example Extended Inquiry Response .. 28
 2.2 Example Advertising Data ... 29
1 DATA TYPES DEFINITIONS AND FORMATS

This part defines the basic data types used for Extended Inquiry Response (EIR), Advertising Data (AD), and OOB data blocks. All data types defined here may be used for EIR or AD data types unless stated otherwise. Additional data types may be defined in profile specifications.

The values for the data types are listed in the Bluetooth Assigned Numbers document.

All numerical multi-byte entities and values associated with the following data types shall use little-endian byte order.
1.1 SERVICE UUID

1.1.1 Description

The Service UUID data type is used to include a list of Service or Service Class UUIDs.

There are six data types defined for the three sizes of Service UUIDs that may be returned:

- 16-bit Bluetooth Service UUIDs
- 32-bit Bluetooth Service UUIDs
- Global 128-bit Service UUIDs

Two Service UUID data types are assigned to each size of Service UUID. One Service UUID data type indicates that the Service UUID list is incomplete and the other indicates the Service UUID list is complete.

An extended inquiry response or advertising data packet shall not contain more than one instance for each Service UUID data size. If a device has no Service UUIDs of a certain size, 16, 32, or 128 bit, the corresponding field in the extended inquiry response or advertising data packet shall be marked as complete with no Service UUIDs. An omitted Service UUID data type shall be interpreted as an empty incomplete-list.

The Service UUID data types corresponding to 32-bit Service UUIDs shall not be sent in advertising data packets.

1.1.2 Format

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><<Incomplete List of 16-bit Service UUIDs>></td>
<td>More 16-bit Service UUIDs available</td>
</tr>
<tr>
<td><<Complete List of 16-bit Service UUIDs>></td>
<td>Complete list of 16-bit Service UUIDs</td>
</tr>
<tr>
<td><<Incomplete List of 32-bit Service UUIDs>></td>
<td>More 32-bit Service UUIDs available Note: Not used in advertising packets.</td>
</tr>
<tr>
<td><<Complete List of 32-bit Service UUIDs>></td>
<td>Complete list of 32-bit Service UUIDs Note: Not used in advertising packets.</td>
</tr>
</tbody>
</table>

Table 1.1: Service UUID Data Types
Table 1.1: Service UUID Data Types

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><<Incomplete List of 128-bit Service UUIDs>></td>
<td>More 128-bit Service UUIDs available</td>
</tr>
<tr>
<td><<Complete List of 128-bit Service UUIDs>></td>
<td>Complete list of 128-bit Service UUIDs</td>
</tr>
</tbody>
</table>
1.2 LOCAL NAME

1.2.1 Description

The Local Name data type shall be the same as, or a shortened version of, the local name assigned to the device. The Local Name data type value indicates if the name is complete or shortened. If the name is shortened, the complete name can be read using the remote name request procedure over BR/EDR or by reading the device name characteristic after the connection has been established using GATT.

An extended inquiry response packet or advertising data packet shall not contain more than one instance of the Local Name data type.

A shortened name shall only contain contiguous characters from the beginning of the full name. For example, if the device name is ‘BT_Device_Name’ then the shortened name could be ‘BT_Device’ or ‘BT_Dev’.

1.2.2 Format

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><<Shortened Local Name>></td>
<td>Shortened local name</td>
</tr>
<tr>
<td><<Complete Local Name>></td>
<td>Complete local name</td>
</tr>
</tbody>
</table>

Table 1.2: Local Name Data Types
1.3 FLAGS

1.3.1 Description

The Flags data type contains one bit Boolean flags. The Flags data type shall be included when any of the Flag bits are non-zero, otherwise the Flags data type may be omitted. All octets that are 0x00 are not transmitted as long as all other octets after that octet are also 0x00.

Flags used over the LE physical channel are:

- Limited Discoverable Mode
- General Discoverable Mode
- BR/EDR Not Supported
- Simultaneous LE and BR/EDR to Same Device Capable (Controller)
- Simultaneous LE and BR/EDR to Same Device Capable (Host)

The LE Limited Discoverable Mode and LE General Discoverable Mode flags shall be ignored when received over the BR/EDR physical channel. The ‘BR/EDR Not Supported’ flag shall be set to 0 when sent over the BR/EDR physical channel.

An extended inquiry response packet or advertising data packet shall not contain more than one instance of the Flags data type.

The Flags AD type shall not be included in the scan response data.

1.3.2 Format

The Flags field may be zero or more octets long. This allows the Flags field to be extended while using the minimum number of octets within the data packet.
<table>
<thead>
<tr>
<th>Data Type</th>
<th>Octet</th>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><<<Flags>></td>
<td>0</td>
<td>0</td>
<td>LE Limited Discoverable Mode</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>LE General Discoverable Mode</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>BR/EDR Not Supported. Bit 37 of LMP Feature Mask Definitions (Page 0)</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>3</td>
<td>Simultaneous LE and BR/EDR to Same Device Capable (Controller). Bit 49 of LMP Feature Mask Definitions (Page 0)</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>4</td>
<td>Simultaneous LE and BR/EDR to Same Device Capable (Host). Bit 66 of LMP Feature Mask Definitions (Page 1)</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>5..7</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Table 1.3: Flags Data Types
1.4 MANUFACTURER SPECIFIC DATA

1.4.1 Description

The Manufacturer Specific data type is used for manufacturer specific data. The first two data octets shall contain a company identifier code from the Assigned Numbers - Company Identifiers document. The interpretation of any other octets within the data shall be defined by the manufacturer specified by the company identifier.

1.4.2 Format

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><<Manufacturer Specific Data>></td>
<td>Size: 2 or more octets
The first 2 octets contain the Company Identifier Code followed by additional manufacturer specific data</td>
</tr>
</tbody>
</table>

Table 1.4: Manufacturer Specific Data Type
1.5 TX POWER LEVEL

1.5.1 Description

The TX Power Level data type indicates the transmitted power level of the packet containing the data type. The TX Power Level data type may be used to calculate path loss on a received packet using the following equation:

\[
\text{pathloss} = \text{Tx Power Level} - \text{RSSI}
\]

where “RSSI” is the received signal strength, in dBm, of the packet received.

For example, if Tx Power Level = +4 (dBm) and the RSSI on the received packet is -60 (dBm) then the total path loss is +4 – (-60) = +64 dB. If a second packet were received at -40 dBm with a Tx Power Level data type = +15 dBm the resulting pathloss would be +55 dB. An application could use these pathloss values to choose which device it thinks might be closer (the one with the lower pathloss value).

Unfortunately, due to fading and varying antenna, circuit, and chip characteristics, these resulting pathloss values will have uncertainty. Some of the uncertainty (for example, due to fading) may be able to be removed if multiple packets are received from the same device.

Note: When the TX Power Level data type is not present, the TX power level of the packet is unknown.

1.5.2 Format

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><<TX Power Level>></td>
<td>Size: 1 octet</td>
</tr>
<tr>
<td></td>
<td>0xXX: -127 to +127 dBm</td>
</tr>
</tbody>
</table>

Table 1.5: TX Power Level Data Type
1.6 SECURE SIMPLE PAIRING OUT OF BAND (OOB)

1.6.1 Description

The Secure Simple Pairing Out of Band data types enable an out of band mechanism to communicate discovery information as well as other information related to the pairing process.

The Secure Simple Pairing Out of Band data types shall not be used in EIR or AD packets over the BR/EDR or LE transports and shall be only used over an out-of-band mechanism.

1.6.2 Format

The Secure Simple Pairing Out of Band data types shall be encapsulated in an OOB data block as defined in Volume 3, Part C, section 5.2.2.7 and Figure 5.6 of that section. The OOB data block consists of the mandatory part with fields SSP OOB Length and BD_ADDR as described in Table 1.6, followed by optional data types described in Table 1.7.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| <<SSP OOB Length>> | Size: 2 octets
0xXXXX: 8 to 65535 bytes
This field contains the length of the entire OOB data block including the length field itself. |
| <<BD_ADDR>> | Size: 6 octets
Format defined in [Vol. 2, Part B] Section 1.2 on page 68 |

Table 1.6: Fields for OOB Data Block Mandatory Part

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
</table>
| <<Class of Device>> | Size: 3 octets
Format defined in Assigned Numbers |
| <<Simple Pairing Hash C>> | Size: 16 octets
Format defined in [Vol. 2], Part H Section 7.2.2 |

Table 1.7: Data Types for OOB Data Block Optional Parts
Table 1.7: Data Types for OOB Data Block Optional Parts

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><<Simple Pairing Randomizer R>></td>
<td>Size: 16 octets</td>
</tr>
<tr>
<td></td>
<td>Format defined in [Vol. 2], Part H Section 7.2.2</td>
</tr>
</tbody>
</table>
1.7 SECURITY MANAGER OUT OF BAND (OOB)

1.7.1 Description

The Security Manager Out of Band data type allows an out of band mechanism to be used by the Security Manager to communicate discovery information as well as other information related to the pairing process.

The Security Manager Out of Band data type shall not be used in EIR or AD packets over the BR/EDR or LE transports and may only be sent over an out-of-band mechanism.

1.7.2 Format

The Security Manager Out of Band data type size is 1 octet.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><<Security Manager Out of Band Flag>></td>
<td>0</td>
<td>OOB Flags Field</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0 = OOB data not present, 1 = OOB data present)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>LE supported (Host) (i.e. bit 65 of LMP Extended Feature bits Page 1)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Simultaneous LE and BR/EDR to Same Device Capable (Host) (i.e. bit 66 of LMP Extended Feature bits Page 1)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Address type (0 = Public Address, 1 = Random Address)</td>
</tr>
<tr>
<td></td>
<td>4..7</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Table 1.8: Security Manager OOB Flags Data Type
1.8 SECURITY MANAGER TK VALUE

1.8.1 Description

The Security Manager TK Value data type allows an out of band mechanism to be used by the Security Manager to communicate the TK value.

The Security Manager TK Value data type shall not be used in EIR or AD packets over the BR/EDR or LE transports and shall only be sent over an out-of-band mechanism.

1.8.2 Format

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
</table>
| <<Security Manager TK Value>> | Size: 16 octets
Value as used in pairing over LE Physical channel.
Format defined in [Vol. 3], Part H Section 2.3 |

Table 1.9: Security Manager TK Value Data Type
1.9 SLAVE CONNECTION INTERVAL RANGE

1.9.1 Description

The Slave Connection Interval Range data type contains the Peripheral’s preferred connection interval range, for all logical connections. See Vol 3, Part C, Section 12.5.

Note: The minimum value depends on the battery considerations of the Peripheral and the maximum connection interval depends on the buffers available on the Peripheral.

The Central should use the information from the Peripheral’s Slave Connection Interval Range data type when establishing a connection.

This data type shall not be sent over EIR.

Note: Central and Peripheral are GAP roles as defined in Vol.3, Part C, Section 2.2.2.
1.9.2 Format

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><<Slave Connection Interval Range>></td>
<td>Size: 4 Octets [\text{connInterval}_{\text{min}} = \text{Conn_Interval_Min} \times 1.25 \text{ ms}]</td>
</tr>
<tr>
<td></td>
<td>\text{Conn_Interval_Min} range: 0x0006 to 0x0C80 [\text{value of 0xFFFF indicates no specific minimum.}]</td>
</tr>
<tr>
<td></td>
<td>Values not defined above are reserved.</td>
</tr>
<tr>
<td></td>
<td>The other 2 octets defines the maximum value for the connection interval in the following manner: [\text{connInterval}_{\text{max}} = \text{Conn_Interval_Max} \times 1.25 \text{ ms}]</td>
</tr>
<tr>
<td></td>
<td>\text{Conn_Interval_Max} range: 0x0006 to 0x0C80 [\text{Conn_Interval_Max} \text{ shall be equal to or greater than the Conn_Interval_Min.}]</td>
</tr>
<tr>
<td></td>
<td>\text{value of 0xFFFF indicates no specific maximum.} [\text{Values not defined above are reserved.}]</td>
</tr>
</tbody>
</table>

Table 1.10: Slave Connection Interval Range Data Type
1.10 SERVICE SOLICITATION

1.10.1 Description

A Peripheral device may send the Service Solicitation data type to invite Central devices that expose one or more of the services specified in the Service Solicitation data to connect. The Peripheral device should be in the undirected connectable mode and in one of the discoverable modes. This enables a Central device providing one or more of these services to connect to the Peripheral device, so that the Peripheral device can use the services on the Central device.

The Service Solicitation data type shall not be sent over EIR.

Note: Central and Peripheral are GAP roles as defined in Vol.3, Part C, Section 2.2.2.

1.10.2 Format

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><<List of 16 bit Service Solicitation UUIDs>></td>
<td>List of 16 bit Service Solicitation UUIDs</td>
</tr>
<tr>
<td><<List of 128 bit Service Solicitation UUIDs>></td>
<td>List of 128 bit Service Solicitation UUIDs</td>
</tr>
</tbody>
</table>

Table 1.11: Service Solicitation UUID Data Types
1.11 SERVICE DATA

1.11.1 Description

The Service Data data type consists of a service UUID with the data associated with that service.

The Service Data data type shall not be sent over EIR.

1.11.2 Format

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
</table>
| <<Service Data>> | Size: 2 or more octets
The first 2 octets contain the 16 bit Service UUID followed by additional service data |

Table 1.12: Service Data
1.12 APPEARANCE

1.12.1 Description

The Appearance data type defines the external appearance of the device. The Appearance data type shall exist only once. It may be sent in either the Advertising or Scan Response data, but not both.

This value shall be the same as the Appearance characteristic, as defined in Vol. 3, Part C, Section 12.2.

The Appearance data type shall not be sent over EIR.

1.12.2 Format

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><<Appearance>></td>
<td>The Appearance value shall be the enumerated value as defined by Bluetooth Assigned Numbers.</td>
</tr>
</tbody>
</table>

Table 1.13: Appearance
1.13 PUBLIC TARGET ADDRESS

1.13.1 Description

The Public Target Address data type defines the address of one or more intended recipients of an advertisement when one or more devices were bonded using a public address. This data type is intended to be used to avoid a situation where a bonded device unnecessarily responds to an advertisement intended for another bonded device.

This data type shall exist only once. It may be sent in either the Advertising or Scan Response data, but not both.

This data type shall not be sent over EIR.

1.13.2 Format

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><<Public Target Address>></td>
<td>Size: Multiples of 6 octets</td>
</tr>
<tr>
<td></td>
<td>The format of each 6 octet address is the same as the Public Device Address defined in Vol. 6, Part B, Section 1.3.</td>
</tr>
<tr>
<td></td>
<td>The Public Target Address value shall be the enumerated value as defined by Bluetooth Assigned Numbers.</td>
</tr>
</tbody>
</table>

Table 1.14: Public Target Address
1.14 RANDOM TARGET ADDRESS

1.14.1 Description

The Random Target Address data type defines the address of one or more intended recipients of an advertisement when one or more devices were bonded using a random address. This data type is intended to be used to avoid a situation where a bonded device unnecessarily responds to an advertisement intended for another bonded device.

This data type shall exist only once. It may be sent in either the Advertising or Scan Response data, but not both.

This data type shall not be sent over EIR.

1.14.2 Format

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
</table>
| <<Random Target Address>> | Size: Multiples of 6 octets
The format of each 6 octet address is the same as the Random Device Address defined in Vol. 6, Part B, Section 1.3.
The Random Target Address value shall be the enumerated value as defined by Bluetooth Assigned Numbers. |

Table 1.15: Random Target Address
2 EXAMPLES

The following sections include examples of EIR and Advertising Data Types.

2.1 EXAMPLE EXTENDED INQUIRY RESPONSE

This is an example extended inquiry response for a phone with PANU and Hands-free Audio Gateway:

<table>
<thead>
<tr>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x06</td>
<td>Length of this Data</td>
</tr>
<tr>
<td>0x09</td>
<td><<Complete Local Name>></td>
</tr>
<tr>
<td>0x50</td>
<td>'P'</td>
</tr>
<tr>
<td>0x68</td>
<td>'h'</td>
</tr>
<tr>
<td>0x6F</td>
<td>'o'</td>
</tr>
<tr>
<td>0x6E</td>
<td>'n'</td>
</tr>
<tr>
<td>0x65</td>
<td>'e'</td>
</tr>
<tr>
<td>0x05</td>
<td>Length of this Data</td>
</tr>
<tr>
<td>0x03</td>
<td><<Complete list of 16-bit Service UUIDs>></td>
</tr>
<tr>
<td>0x15</td>
<td>PANU service class UUID</td>
</tr>
<tr>
<td>0x1F</td>
<td>Hands-free Audio Gateway service class UUID</td>
</tr>
<tr>
<td>0x01</td>
<td>Length of this data</td>
</tr>
<tr>
<td>0x05</td>
<td><<Complete list of 32-bit Service UUIDs>></td>
</tr>
<tr>
<td>0x01</td>
<td>Length of this data</td>
</tr>
<tr>
<td>0x07</td>
<td><<Complete list of 128-bit Service UUIDs>></td>
</tr>
<tr>
<td>0x00</td>
<td>End of Data (Not transmitted over the air)</td>
</tr>
</tbody>
</table>

Table 2.1: Example extended inquiry response
2.2 EXAMPLE ADVERTISING DATA

This is an example of advertising data with AD types:

<table>
<thead>
<tr>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x02</td>
<td>Length of this Data</td>
</tr>
<tr>
<td>0x01</td>
<td>"<<Flags>>"</td>
</tr>
<tr>
<td>0x01</td>
<td>LE Limited Discoverable Flag set</td>
</tr>
<tr>
<td>0x0A</td>
<td>Length of this Data</td>
</tr>
<tr>
<td>0x09</td>
<td>"<<Complete local name>>"</td>
</tr>
<tr>
<td>0x50</td>
<td>'P'</td>
</tr>
<tr>
<td>0x65</td>
<td>'e'</td>
</tr>
<tr>
<td>0x64</td>
<td>'d'</td>
</tr>
<tr>
<td>0x6F</td>
<td>'o'</td>
</tr>
<tr>
<td>0x6D</td>
<td>'m'</td>
</tr>
<tr>
<td>0x65</td>
<td>'e'</td>
</tr>
<tr>
<td>0x74</td>
<td>'t'</td>
</tr>
<tr>
<td>0x65</td>
<td>'e'</td>
</tr>
<tr>
<td>0x72</td>
<td>'r'</td>
</tr>
</tbody>
</table>

Table 2.2: Example advertising data
COMMON PROFILE AND SERVICE ERROR CODES
CONTENTS

1 Overview of Common Profile and Service Error Codes34
 1.1 Usage Descriptions ..34
 1.2 List of Error Codes ..34

2 Common Profile and Service Error Code Descriptions35
 2.1 Out of Range (0xFF) ...35
 2.2 Procedure Already in Progress (0xFE)35
 2.3 Client Characteristic Configuration Descriptor Improperly
 Configured (0xFD) ...35
1 OVERVIEW OF COMMON PROFILE AND SERVICE ERROR CODES

This document lists the common profile and service error codes sent over the Attribute Protocol. Error codes have a size of one octet.

1.1 USAGE DESCRIPTIONS

The purpose of this section is to give descriptions of how the common profile error codes should be used. It is beyond the scope of this document to give detailed descriptions of all situations where error codes can be used, especially as this is implementation dependent.

1.2 LIST OF ERROR CODES

The possible range of common profile error codes is 0xE0-0xFF. The Common Profile and Service Error Code Descriptions Part provides an error code usage description for each failure error code.

Values marked as “Reserved for Future Use”, can be used in future versions of the specification.

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xE0 – 0xFC</td>
<td>Reserved for Future Use</td>
</tr>
<tr>
<td>0xFD</td>
<td>Client Characteristic Configuration Descriptor Improperly Configured</td>
</tr>
<tr>
<td>0xFE</td>
<td>Procedure Already in Progress</td>
</tr>
<tr>
<td>0xFF</td>
<td>Out of Range</td>
</tr>
</tbody>
</table>

Table 1.1: List of Common Profile and Service Error Codes
2 COMMON PROFILE AND SERVICE ERROR CODE DESCRIPTIONS

2.1 OUT OF RANGE (0xFF)

The Out of Range error code is used when an attribute value is out of range as defined by a profile or service specification.

2.2 PROCEDURE ALREADY IN PROGRESS (0xFE)

The Procedure Already in Progress error code is used when a profile or service request cannot be serviced because an operation that has been previously triggered is still in progress.

2.3 CLIENT CHARACTERISTIC CONFIGURATION DESCRIPTOR IMPROPERLY CONFIGURED (0xFD)

The Client Characteristic Configuration Descriptor Improperly Configured error code is used when a Client Characteristic Configuration descriptor is not configured according to the requirements of the profile or service.