Reconnection Configuration Profile (RCP)

Bluetooth® Test Specification

- **Revision**: RCP.TS.1.0.0
- **Revision Date**: 2017-12-05
- **Group Prepared By**: Medical Devices Working Group
- **Feedback Email**: med-main@bluetooth.org

Abstract:
This document defines test structures and procedures for conformance test of products implementing the Reconnection Configuration Profile Specification.
Revision History

<table>
<thead>
<tr>
<th>Revision History</th>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0.9.0r00</td>
<td>2016-04-29</td>
<td>Initial draft</td>
</tr>
<tr>
<td>D0.9.0r01</td>
<td>2016-07-13</td>
<td>Incorporated changes based on modification of service and profile</td>
</tr>
<tr>
<td>D0.9.0r02</td>
<td>2016-08-30</td>
<td>Incorporated first feedback from BTI and other changes</td>
</tr>
<tr>
<td>D0.9.0r03</td>
<td>2016-10-23</td>
<td>Incorporated second feedback from BTI and added TCMT</td>
</tr>
<tr>
<td>D0.9.0r04</td>
<td>2016-11-07</td>
<td>Incorporated feedback from Med WG and BTI</td>
</tr>
<tr>
<td>D1.0.0r00</td>
<td>2017-08-14</td>
<td>Transition to 1.0 and incorporation from changes based on IOP</td>
</tr>
<tr>
<td>D1.0.0r01</td>
<td>2017-08-15</td>
<td>Updated RCP.TS references to RCP spec d10r02 and incorporated feedback from Med WG</td>
</tr>
<tr>
<td>D1.0.0r02</td>
<td>2017-09-01</td>
<td>Incorporated feedback from Med WG</td>
</tr>
<tr>
<td>D1.0.0r03</td>
<td>2017-10-13</td>
<td>Updated TCMT per updated RCP.ICS and incorporated feedback from BTI</td>
</tr>
<tr>
<td>D1.0.0r04</td>
<td>2017-10-20</td>
<td>Incorporated feedback from BTI and editorial changes</td>
</tr>
<tr>
<td>D1.0.0r05</td>
<td>2017-11-01</td>
<td>Per BTI’s feedback renumbered BV and BI test cases, and incorporated editorial changes</td>
</tr>
<tr>
<td>D1.0.0r05</td>
<td>2017-11-24</td>
<td>Approved by BTI.</td>
</tr>
<tr>
<td>1.0.0</td>
<td>2017-12-05</td>
<td>Adopted by the Bluetooth SIG Board of Directors.</td>
</tr>
</tbody>
</table>

Contributors

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wolfgang Heck</td>
<td>F.Hoffmann-La Roche AG</td>
</tr>
<tr>
<td>Felix Bootz</td>
<td>F.Hoffmann-La Roche AG</td>
</tr>
<tr>
<td>Ismail Mohamud</td>
<td>E-Qualus Partners, LLC</td>
</tr>
<tr>
<td>Laurence Richardson</td>
<td>Qualcomm Technologies International Inc.</td>
</tr>
</tbody>
</table>
Use of this specification is your acknowledgement that you agree to and will comply with the following notices and disclaimers. You are advised to seek appropriate legal, engineering, and other professional advice regarding the use, interpretation, and effect of this specification.

Use of Bluetooth specifications by members of Bluetooth SIG is governed by the membership and other related agreements between Bluetooth SIG and its members, including those agreements posted on Bluetooth SIG's website located at www.bluetooth.com. Any use of this specification by a member that is not in compliance with the applicable agreements and other related agreements is prohibited and, among other things, may result in (i) termination of the applicable agreements and (ii) liability for infringement of the intellectual property rights of Bluetooth SIG and its members.

Use of this specification by anyone who is not a member of Bluetooth SIG is prohibited and is an infringement of the intellectual property rights of Bluetooth SIG and its members. The furnishing of this specification does not grant any license to any intellectual property of Bluetooth SIG or its members. THIS SPECIFICATION IS PROVIDED "AS IS" AND BLUETOOTH SIG, ITS MEMBERS AND THEIR AFFILIATES MAKE NO REPRESENTATIONS OR WARRANTIES AND DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, TITLE, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR THAT THE CONTENT OF THIS SPECIFICATION IS FREE OF ERRORS. For the avoidance of doubt, Bluetooth SIG has not made any search or investigation as to third parties that may claim rights in or to any specifications or any intellectual property that may be required to implement any specifications and it disclaims any obligation or duty to do so.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, BLUETOOTH SIG, ITS MEMBERS AND THEIR AFFILIATES DISCLAIM ALL LIABILITY ARISING OUT OF OR RELATING TO USE OF THIS SPECIFICATION AND ANY INFORMATION CONTAINED IN THIS SPECIFICATION, INCLUDING LOST REVENUE, PROFITS, DATA OR PROGRAMS, OR BUSINESS INTERRUPTION, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, AND EVEN IF BLUETOOTH SIG, ITS MEMBERS OR THEIR AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF THE DAMAGES.

If this specification is a prototyping specification, it is solely for the purpose of developing and using prototypes to verify the prototyping specifications at Bluetooth SIG sponsored IOP events. Prototyping Specifications cannot be used to develop products for sale or distribution and prototypes cannot be qualified for distribution.

Products equipped with Bluetooth wireless technology ("Bluetooth Products") and their combination, operation, use, implementation, and distribution may be subject to regulatory controls under the laws and regulations of numerous countries that regulate products that use wireless non-licensed spectrum. Examples include airline regulations, telecommunications regulations, technology transfer controls and health and safety regulations. You are solely responsible for complying with all applicable laws and regulations and for obtaining any and all required authorizations, permits, or licenses in connection with your use of this specification and development, manufacture, and distribution of Bluetooth Products. Nothing in this specification provides any information or assistance in connection with complying with applicable laws or regulations or obtaining required authorizations, permits, or licenses.

Bluetooth SIG is not required to adopt any specification or portion thereof. If this specification is not the final version adopted by Bluetooth SIG’s Board of Directors, it may not be adopted. Any specification adopted by Bluetooth SIG’s Board of Directors may be withdrawn, replaced, or modified at any time. Bluetooth SIG reserves the right to change or alter final specifications in accordance with its membership and operating agreements.

Copyright © 2016–2017. All copyrights in the Bluetooth Specifications themselves are owned by Apple Inc., Ericsson AB, Intel Corporation, Lenovo (Singapore) Pte. Ltd., Microsoft Corporation, Nokia Corporation, and Toshiba Corporation. The Bluetooth word mark and logos are owned by Bluetooth SIG, Inc. Other third-party brands and names are the property of their respective owners.
Contents

1 Scope ... 6

2 References, Definitions, and Abbreviations ... 7
 2.1 References .. 7

3 Test Suite Structure (TSS) .. 8
 3.1 Test Strategy .. 8
 3.2 Test Groups .. 8
 3.2.1 Discovery of Services and Characteristics .. 8
 3.2.2 Reconnection Configuration Features ... 8
 3.2.3 Reconnection Configuration Settings ... 8
 3.2.4 Reconnection Configuration Procedures ... 8
 3.3 Test Database ... 9
 3.3.1 Database with E2E Checksums .. 9

4 Test Cases (TC) .. 10
 4.1 Introduction .. 10
 4.1.1 Test Case Identification Conventions ... 10
 4.1.2 Conformance ... 10
 4.1.3 Pass/Fail Verdict Conventions ... 11
 4.2 Setup Preambles ... 11
 4.2.1 Setup LE Connection .. 11
 4.3 Discovery of Services and Characteristics ... 11
 4.3.1 RCP/CL/DOSC/BV-01-I [RC Service Discovery] .. 11
 4.3.2 RCP/CL/DOSC/BV-02-I [Bond Management Service Discovery] 12
 4.3.3 RCP/CL/DOSC/BV-03-I [RC Feature Characteristic Discovery] 13
 4.3.4 RCP/CL/DOSC/BV-04-I [RC Settings Characteristic Discovery] 14
 4.3.5 RCP/CL/DOSC/BV-05-I [RC Settings Client Characteristic Configuration Discovery] ... 14
 4.3.6 RCP/CL/DOSC/BV-06-I [RC Control Point Characteristic Discovery] 15
 4.3.7 RCP/CL/DOSC/BV-07-I [RC Control Point Client Characteristic Configuration Discovery] ... 16
 4.3.8 RCP/CL/DOSC/BV-08-I [Bond Management Control Point Characteristic Discovery] ... 17
 4.3.9 RCP/CL/DOSC/BV-09-I [Bond Management Features Characteristic Discovery] ... 17
 4.4 Reconnection Configuration Features ... 18
 4.4.1 RCP/CL/RCF/BV-01-I [Client Reads the RC Feature Characteristic with E2E CRC] ... 18
 4.4.2 RCP/CL/RCF/BV-02-I [Client Reads the RC Feature Characteristic without E2E CRC] ... 19
 4.4.3 RCP/CL/RCF/BV-01-I [Client Reads the RC Feature or RC Settings Characteristic with invalid E2E CRC] ... 20
 4.4.4 RCP/CL/RCF/BV-02-I [Client Reads the RC Feature Characteristic with invalid CRC value] ... 21
 4.5 Reconnection Configuration Settings ... 22
 4.5.1 RCP/CL/RSET/BV-01-I [Client Configures RC Settings for Notification] ... 22
 4.5.2 RCP/CL/RSET/BV-02-I [Client is able to Receive Multiple Notifications] 23
 4.5.3 RCP/CL/RSET/BV-03-I [Upgrade to LESC Only] ... 23
 4.5.4 RCP/CL/RSET/BV-04-I [Switch to OOB Pairing Only mode] 24
 4.5.5 RCP/CL/RSET/BV-05-I [Client Disables Reconnection Configuration Service] ... 25
 4.5.6 RCP/CL/RSET/BV-06-I [Client Enables Reconnection Configuration Service] ... 26
 4.6 Reconnection Configuration Procedures ... 27
 4.6.1 RCP/CL/RCPROC/BV-01-I [Client Configures RC Control Point for Indications] ... 27
 4.6.2 RCP/CL/RCPROC/BV-02-I [Client can Execute Enable Disconnect Procedure] ... 28
 4.6.3 RCP/CL/RCPROC/BV-03-I [Client reads Actual Communication Parameters] ... 29
<table>
<thead>
<tr>
<th>Section</th>
<th>Test Case Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6.4</td>
<td>RCP/CL/RCPROC/BV-04-I [Client Proposes Settings in Group A]</td>
</tr>
<tr>
<td>4.6.5</td>
<td>RCP/CL/RCPROC/BV-05-I [Client Proposes Settings in Group B]</td>
</tr>
<tr>
<td>4.6.6</td>
<td>RCP/CL/RCPROC/BV-06-I [Client Activates Stored Settings]</td>
</tr>
<tr>
<td>4.6.7</td>
<td>RCP/CL/RCPROC/BV-07-I [Client Requests the Max Values]</td>
</tr>
<tr>
<td>4.6.8</td>
<td>RCP/CL/RCPROC/BV-08-I [Client Requests the Min Values]</td>
</tr>
<tr>
<td>4.6.9</td>
<td>RCP/CL/RCPROC/BV-09-I [Client Requests Stored Values]</td>
</tr>
<tr>
<td>4.6.10</td>
<td>RCP/CL/RCPROC/BV-10-I [Client Sets White List Timer]</td>
</tr>
<tr>
<td>4.6.11</td>
<td>RCP/CL/RCPROC/BV-11-I [Client Reads White List Timer]</td>
</tr>
</tbody>
</table>

5 Test Case Mapping
1 **Scope**

This Bluetooth document contains the Test Suite Structure (TSS) and Test Cases (TC) to test the Reconnection Configuration Profile.

The objective of this test specification is to provide a basis for interoperability tests for Bluetooth devices giving a high probability of air interface interoperability between different manufacturers’ Bluetooth devices.
2 References, Definitions, and Abbreviations

2.1 References

This Bluetooth document incorporates, by dated or undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For the purpose of this Bluetooth document, the definitions, and abbreviations in [1], [2], and [3] apply.

[1] Bluetooth Core Specification, Version 4.2 or later
[6] Reconnection Configuration Profile Implementation eXtra Information for Test, IXIT
3 Test Suite Structure (TSS)

3.1 Test Strategy

The test objectives of this test suite will be to verify functionality of the Reconnection Configuration Profile and ensure interoperability between Bluetooth devices.

The testing approach will be to cover mandatory and optional requirements in the profile specification.

As the Reconnection Configuration Profile is a GATT based profile, most of the tests are described in terms of GATT sub-procedures to be executed.

In cases where a GATT sub-procedure simply maps to a very few ATT requests and responds, the test procedure and the expected results are described directly in terms of ATT PDUs.

An IUT has to provide an interface to the Upper Tester to report the result of procedure executions. This interface can be provided by any mean that is appropriate for that purpose and plausible.

The test equipment shall provide an implementation of the Radio Controller and the parts of the Host needed to perform the test cases specified.

The test suite will contain Valid Behavior (BV) tests complemented with Invalid Behavior (BI) tests where required.

3.2 Test Groups

The following test groups have been defined:

3.2.1 Discovery of Services and Characteristics

This group verifies the ability of a Reconnection Configuration client to discover all necessary services and characteristics of a Reconnection Configuration server.

3.2.2 Reconnection Configuration Features

This group verifies that an IUT correctly identifies the implemented features of a Reconnection Configuration server.

3.2.3 Reconnection Configuration Settings

This group verifies that an IUT correctly reads the settings of a Reconnection Configuration server.

3.2.4 Reconnection Configuration Procedures

This group verifies that an IUT correctly executes all supported Control Point procedures.
3.3 Test Database

3.3.1 Database with E2E Checksums

<table>
<thead>
<tr>
<th>Sequence of Octets</th>
<th>Resulting E2E Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0F 0x04 0x20 0x4E 0x7F 0x0C 0x7F 0x0C 0xF3 0x01 0x7F 0x0C 0x00 0x40 0xE8 0x03</td>
<td>0x2710</td>
</tr>
<tr>
<td>0xFF 0xFF 0x03</td>
<td>0x329B</td>
</tr>
<tr>
<td>0x3E 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09</td>
<td>0x2F01</td>
</tr>
</tbody>
</table>

Table 3.1: Sequences of Octets with Resulting E2E Checksums
4 Test Cases (TC)

4.1 Introduction

4.1.1 Test Case Identification Conventions

Test cases shall be assigned unique identifiers per the conventions in [2]. The convention used here is <spec abbreviation>/<IUT role>/<class>/<feat>/<func>/<subfunc>/<cap>/<xx>-<nn>-<y>.

Bolded ID parts shall appear in the order prescribed. Non-bolded ID parts (if applicable) shall appear between the bolded parts. The order of the non-bolded parts may vary from test specification to test specification, but shall be consistent within each individual test specification.

<table>
<thead>
<tr>
<th>Identifier Abbreviation</th>
<th>Spec Identifier <spec abbreviation></th>
</tr>
</thead>
<tbody>
<tr>
<td>RCP</td>
<td>Reconnection Configuration Profile</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identifier Abbreviation</th>
<th>Role Identifier <IUT role></th>
</tr>
</thead>
<tbody>
<tr>
<td>CL</td>
<td>Client Role</td>
</tr>
<tr>
<td>SR</td>
<td>Reconnection Configuration Server Role</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identifier Abbreviation</th>
<th>Feature Identifier <feat></th>
</tr>
</thead>
<tbody>
<tr>
<td>DOSC</td>
<td>Discovery of Services and Characteristics</td>
</tr>
<tr>
<td>RCF</td>
<td>Reconnection Configuration Features</td>
</tr>
<tr>
<td>RCSET</td>
<td>Reconnection Configuration Settings</td>
</tr>
<tr>
<td>RCPROC</td>
<td>Reconnection Configuration Procedures</td>
</tr>
</tbody>
</table>

Table 4.1: Reconnection Configuration Profile TC Feature Naming Convention

4.1.2 Conformance

When conformance is claimed, all capabilities indicated as mandatory for this Specification shall be supported in the specified manner (process-mandatory). This also applies to all optional and conditional capabilities for which support is indicated. All mandatory capabilities, and optional and conditional capabilities for which support is indicated, are subject to verification as part of the Bluetooth Qualification Program.

The Bluetooth Qualification Program may employ tests to verify implementation robustness. The level of implementation robustness that is verified varies from one Specification to another and may be revised for cause based on interoperability issues found in the market.

Such tests may verify:

* That claimed capabilities may be used in any order and any number of repetitions that is not excluded by the Specification, OR

* That capabilities enabled by the implementations are sustained over durations expected by the use case, OR
• That the implementation gracefully handles any quantity of data expected by the use case, OR

• That in cases where more than one valid interpretation of the Specification exists, the implementation complies with at least one interpretation and gracefully handles other interpretations OR

• That the implementation is immune to attempted security exploits.

A single execution of each of the required tests is required in order to constitute a pass verdict. However, it is noted that in order to provide a foundation for interoperability, it is necessary that a qualified implementation consistently and repeatedly pass any of the applicable tests.

In any case, where a member finds an issue with the Test Plan Generator, the Test Case as described in the Test Specification, or with the Test System utilized, the Member is required to notify the responsible party via an errata request such that the issue may be addressed.

4.1.3 Pass/Fail Verdict Conventions

Each test case has an Expected Outcome section, which outlines all the detailed pass criteria conditions that shall be met by the IUT to merit a Pass Verdict.

The convention in this test specification is that, unless there is a specific set of fail conditions outlined in the test case, the IUT fails the test case as soon one of the pass criteria conditions cannot be met. If this occurs the outcome of the test shall be the Fail Verdict.

4.2 Setup Preambles

The procedures defined in this section are provided for information, as they are used by test equipment in achieving the initial conditions in certain tests.

4.2.1 Setup LE Connection

• Initial Condition:

 A Client IUT is not connected over LE.

 A RC Server IUT is not connected over LE.

• Preamble procedure:

 1. Establish an LE transport connection between the IUT and the Lower Tester.
 2. Establish an L2CAP channel 0x0004 between the IUT and the Lower Tester over that LE transport.

4.3 Discovery of Services and Characteristics

4.3.1 RCP/CL/DOSC/BV-01-I [RC Service Discovery]

• Test Purpose

 Verify that the instantiation of the Reconnection Configuration Service can be discovered by the client IUT.

• Reference

 [3] 4.2, 4.2.1
• Initial Condition
 - Establish a connection between the Lower Tester and IUT.
 - The Lower Tester contains one instantiation of the Reconnection Configuration Service as a primary service.

• Test Procedure
 1. The Upper Tester issues a command to the IUT to discover primary services. There are two alternatives:
 - Execute the GATT Discover All Primary Services sub-procedure.
 or
 - Execute the GATT Discover Primary Services by Service UUID sub-procedure, with the service UUID set to «Reconnection Configuration Service».

• Expected Outcome
 Pass verdict
 The IUT performs one of the two alternatives to discover primary services from the Lower Tester.

 An attribute handle range is returned containing the starting handle and the ending handle of the instantiation of the Reconnection Configuration Service definition to the IUT, and the information is reported to the Upper Tester.

4.3.2 RCP/CL/DOSC/BV-02-I [Bond Management Service Discovery]

• Test Purpose
 Verify that the instantiation of the Bond Management Service can be discovered by the client IUT.

• Reference
 [3] 4.2, 4.2.2

• Initial Condition
 - Establish a connection between the Lower Tester and IUT.
 - The Lower Tester contains one instantiation of the Bond Management Service as a primary service.

• Test Procedure
 The Upper Tester issues a command to the IUT to discover primary services. There are two alternatives:

 - The client IUT executes the GATT Discover All Primary Services sub-procedure.
 or

 - The client IUT executes the GATT Discover Primary Services by Service UUID sub-procedure, with the service UUID set to «Bond Management Service».
• Expected Outcome
 Pass verdict
 The IUT performs one of the two alternatives to discover the primary service from the Lower Tester.
 An attribute handle range is returned containing the starting handle and the ending handle of the instantiation of the Bond Management Service definition to the IUT, and the information is reported to the Upper Tester.

4.3.3 RCP/CL/DOSC/BV-03-I [RC Feature Characteristic Discovery]
• Test Purpose
 Verify that a Reconnection Configuration Feature characteristic can be discovered by the client IUT.

• Reference
 [3] 4.3, 4.3.1, 4.3.1.1

• Initial Condition
 - Establish a connection between the Lower Tester and IUT.
 - The IUT knows the handle range of the RC Service, either by executing RCP/CL/DOSC/BV-01-I [RC Service Discovery] or other means.
 - The Lower Tester contains one instantiation of the Reconnection Configuration Service as a primary service including all defined characteristics.
 - The Reconnection Configuration Service contains one RC Feature characteristic.

• Test Procedure
 The Upper Tester issues a command to the IUT to discover the RC Feature characteristic. There are two alternatives:
 - The client IUT executes the GATT Discover All Characteristics of a Service – by Client sub-procedure, with the RC Service handle range given by the Upper Tester.

or
 - The client IUT executes the GATT Discover Characteristics by UUID – by Client sub-procedure, with the RC Service handle range given by the Upper Tester and the characteristic UUID set to «Reconnection Configuration Feature».

• Expected Outcome
 Pass verdict
 The IUT performs one of the two alternatives to discover the characteristic declaration from the Lower Tester.
 The handle of the characteristic declaration and the handle of the characteristic value declaration of the RC Feature characteristic is returned to the IUT, and the information is reported to the Upper Tester.
4.3.4 RCP/CL/DOSC/BV-04-I [RC Settings Characteristic Discovery]

- Test Purpose
 Verify that a Reconnection Configuration (RC) Settings characteristic can be discovered by the client IUT.

- Reference
 [3] 4.3, 4.3.1, 4.3.1.2

- Initial Condition
 - Establish a connection between the Lower Tester and IUT.
 - The IUT knows the handle range of the RC Service, either by executing RCP/CL/DOSC/BV-01-I [RC Service Discovery] or other means.
 - The Lower Tester contains one instantiation of the Reconnection Configuration Service as a primary service including all defined characteristics.
 - The Reconnection Configuration Service contains one RC Settings characteristic.

- Test Procedure
 The Upper Tester issues a command to the IUT to discover the RC Settings characteristic. There are two alternatives:
 - The client IUT executes the GATT Discover All Characteristics of a Service – by Client sub-procedure, with the RC Service handle range given by the Upper Tester.
 - The client IUT executes the GATT Discover Characteristics by UUID – by Client sub-procedure, with the RC Service handle range given by the Upper Tester and the characteristic UUID set to «Reconnection Configuration Settings».

- Expected Outcome
 Pass verdict
 The IUT performs one of the two alternatives to discover the characteristic declaration from the Lower Tester. The handle of the characteristic declaration and the handle of the characteristic value declaration of the RC Settings characteristic is returned to the IUT, and the information is reported to the Upper Tester.

4.3.5 RCP/CL/DOSC/BV-05-I [RC Settings Client Characteristic Configuration Discovery]

- Test Purpose
 Verify that the client IUT can discover the Client Characteristic Configuration descriptor of the Reconnection Configuration Settings characteristic.

- Reference
[3] 4.3.1.2

• Initial Condition
 - Establish a connection between the Lower Tester and IUT.
 - The IUT has discovered the handle range of the RC Settings characteristic either by executing the procedure included in RCP/CL/DOSC/BV-04-I [RC Settings Characteristic Discovery] or by other means.
 - The Lower Tester contains one instantiation of the Reconnection Configuration Service as a primary service including all defined characteristics.
 - The Reconnection Configuration Service contains one RC Settings characteristic with an associated Client Characteristic Configuration descriptor.

• Test Procedure
 1. The Upper Tester issues a command to the IUT to Discover All Characteristic descriptors using the handle range of the RC Settings characteristic.
 2. The IUT executes the GATT Discover all Characteristic Descriptors – by client sub-procedure, using the specified handle range of the RC Settings characteristic.

• Expected Outcome
 Pass verdict

The IUT executes the GATT sub-procedure, with the specified handle range to retrieve the Characteristic Descriptors from the Lower Tester.

4.3.6 RCP/CL/DOSC/BV-06-I [RC Control Point Characteristic Discovery]

• Test Purpose
 Verify that a Reconnection Configuration Control Point characteristic can be detected by the client IUT.

• Reference
 [3] 4.3, 4.3.1, 4.3.1.3

• Initial Condition
 - Establish a connection between the Lower Tester and IUT.
 - The Lower Tester contains one instantiation of the Reconnection Configuration Service as a primary service including all defined characteristics.
 - The Reconnection Configuration Service contains one RC Control Point characteristic.
 - The handle range for the RC Service, implemented in the Lower Tester, is known to the client IUT.

• Test Procedure
 The Upper Tester issues a command to the IUT to discover the RC Control Point characteristic. There are two alternatives:
- Execute the GATT Discover All Characteristics of a Service – by Client sub-procedure, with the handle range for the instantiation of the RC Service implemented in the Lower Tester.

or

- Execute the GATT Discover Characteristics by UUID – by Client sub-procedure, with the specified handle range for the instantiation of the RC Service and the characteristic UUID set to «Reconnection Configuration Control Point».

• Expected Outcome

Pass verdict

The IUT performs one of the two alternatives to discover the Characteristic Value declaration from the Lower Tester.

4.3.7 RCP/CL/DOSC/BV-07-I [RC Control Point Client Characteristic Configuration Discovery]

• Test Purpose

Verify that the client IUT can discover the Client Characteristic Configuration descriptor of the Reconnection Configuration Control Point characteristic.

• Reference

[3] 4.3.1.3

• Initial Condition

- Establish a connection between the Lower Tester and IUT.

- The IUT has discovered the handle range of the RC Control Point characteristic either by executing the procedure included in RCP/CL/DOSC/BV-06-I [RC Control Point Characteristic Discovery] or by other means.

- The Lower Tester contains one instantiation of the Reconnection Configuration Service as a primary service including all defined characteristics.

- The Reconnection Configuration Service contains one RC Control Point characteristic with an associated Client Characteristic Configuration descriptor.

• Test Procedure

1. The Upper Tester issues a command to the IUT to Discover All Characteristic descriptors using the handle range of the RC Control Point characteristic.

2. The IUT executes the GATT Discover all Characteristic Descriptors – by client sub-procedure, using the handle range of the RC Control Point characteristic.

• Expected Outcome

Pass verdict

The IUT executes the GATT sub-procedure, with the specified handle range.
4.3.8 RCP/CL/DOSC/BV-08-I [Bond Management Control Point Characteristic Discovery]

- **Test Purpose**
 Verify that a Bond Management Control Point characteristic can be detected by the client IUT.

- **Reference**
 [3] 4.3.2, 4.3.2.1

- **Initial Condition**
 - Establish a connection between the Lower Tester and IUT.
 - The IUT has discovered the handle range of the Bond Management Service either by executing the procedure included in RCP/CL/DOSC/BV-02-I [Bond Management Service Discovery] or by other means.
 - The Lower Tester contains one instantiation of the Bond Management Service as a primary service including all defined characteristics.
 - The Bond Management Service contains one Bond Management Control Point characteristic.

- **Test Procedure**
 The Upper Tester issues a command to the IUT to discover the Bond Management Control Point characteristic. There are two alternatives:
 - Execute the GATT Discover All Characteristics of a Service – by Client sub-procedure, with the specified handle range for the instantiation of the Bond Management Service implemented in the Lower Tester.

 or

 - Execute the GATT Discover Characteristics by UUID – by Client sub-procedure, with the specified handle range for the instantiation of the Bond Management Service and the characteristic UUID set to «Bond Management Control Point».

- **Expected Outcome**
 Pass verdict

 The IUT performs one of the two alternatives to discover the Characteristic Value declaration from the Lower Tester.

4.3.9 RCP/CL/DOSC/BV-09-I [Bond Management Features Characteristic Discovery]

- **Test Purpose**
 Verify that a Bond Management Feature characteristic can be detected by the client IUT.

- **Reference**
 [3] 4.3.2, 4.3.2.2
• Initial Condition
 - Establish a connection between the Lower Tester and IUT.
 - The IUT has discovered the handle range of the Bond Management Service either by executing the procedure included in RCP/CL/DOSC/BV-02-I [Bond Management Service Discovery] or by other means.
 - The Lower Tester contains one instantiation of the Bond Management Service as a primary service including all defined characteristics.
 - The Bond Management Service contains one Bond Management Feature characteristic.

• Test Procedure
 The Upper Tester issues a command to the IUT to discover the Bond Management Feature characteristic. There are two alternatives:
 - Execute the GATT Discover All Characteristics of a Service – by Client sub-procedure, with the specified handle range for the instantiation of the Bond Management Service.
 OR
 - Execute the GATT Discover Characteristics by UUID – by Client sub-procedure, with the specified handle range for the instantiation of the Bond Management Service and the characteristic UUID set to “Bond Management Feature”.

• Expected Outcome
 Pass verdict
 The IUT performs one of the two alternatives to discover the Characteristic Value declaration from the Lower Tester.

4.4 Reconnection Configuration Features

4.4.1 RCP/CL/RCF/BV-01-I [Client Reads the RC Feature Characteristic with E2E CRC]

• Test Purpose
 Verify that a client IUT can read the RC Feature Characteristic from a Reconnection Configuration Server and calculates the E2E CRC correctly.

• Reference
 [3] 4.4

• Initial Condition
 - The IUT knows the handle of the RC Feature characteristic contained in the Lower Tester by executing RCP/CL/DOSC/BV-03-I [RC Feature Characteristic Discovery] or any other means.
 - The Lower Tester contains one instantiation of the Reconnection Configuration Service as a primary service including all defined characteristics.
- The Upper Tester has access to the content of the Lower Tester’s database.

Test Procedure

1. Change the database from the Lower Tester to contain a specific, valid value for the RC Feature Characteristic value, where not all feature bits are 0 and where neither any RFU bit, nor the Feature Extension bit is set. The value for E2E-CRC Supported bit is 1. The E2E-CRC is calculated.

2. Establish a connection between the IUT and Lower Tester.

3. Send a command from the Upper Tester to request the IUT to read the RC Feature characteristic value from the Lower Tester.

4. After receipt of the expected request by the Lower Tester, send an ATT_Read_Response (0x0B) from the Lower Tester to the IUT.

5. Repeat the test procedure at least 3 times with different values for the RC Feature Characteristic value.

Expected Outcome

Pass verdict

The IUT sends a correctly formatted ATT_Read_Request (0x0A) to the Lower Tester, containing the handle specified by the Upper Tester.

The IUT receives the response from the Lower Tester and reports the set of received features to the Upper Tester.

The set of features reported by the IUT is equal to the set of features in the Lower Tester’s database.

4.4.2 RCP/CL/RCF/BV-02-I [Client Reads the RC Feature Characteristic without E2E CRC]

Test Purpose

Verify that a client IUT can read the RC Feature Characteristic from a Reconnection Configuration Server, ignore RFU bits and expect the E2E CRC to be 0xFFFF.

Reference

[3] 4.4

Initial Condition

- The IUT knows the handle of the RC Feature characteristic contained in the Lower Tester by executing RCP/CL/DOSC/BV-03-I [RC Feature Characteristic Discovery] or any other means.

- The Lower Tester contains one instantiation of the Reconnection Configuration Service as a primary service including all defined characteristics.

- The Upper Tester has access to the content of the Lower Tester’s database.

Test Procedure

1. Change the database from the Lower Tester to contain a specific, valid value for the RC Feature Characteristic value, where not all feature bits are 0 and where one of the RFU bit is set and the
Feature Extension bit is not set. The value for E2E-CRC Supported bit is 0. The E2E-CRC is set to 0xFFFF.

2. Establish a connection between the IUT and Lower Tester.

3. Send a command from Upper Tester to request the IUT to read the RC Feature characteristic value from the Lower Tester.

4. After receipt of the expected request by the Lower Tester, send an ATT_Read_Response (0x0B) from the Lower Tester to the IUT.

5. Repeat the test procedure at least 3 times with different values for the RC Feature Characteristic value.

• Expected Outcome

 Pass verdict

 The IUT sends a correctly formatted ATT_Read_Request (0x0A) to the Lower Tester, containing the handle specified by the Upper Tester.

 The IUT receives the response from the Lower Tester and reports the set of received features to the Upper Tester.

 The set of features reported by the IUT is equal to the set of features in the Lower Tester’s database.

 The IUT ignores the reserved bits and continues to operate as if the reserved bits were not set.

4.4.3 RCP/CL/RCF/BI-01-I [Client Reads the RC Feature or RC Settings Characteristic with invalid E2E CRC]

• Test Purpose

 Verify that a client IUT reads the RC Feature or RC Settings characteristic and detects errors in the calculated checksum.

• Reference

 [3] 4.4, 4.5

• Initial Condition

 - The IUT knows the handle of the RC Feature characteristic or RC Settings characteristic contained in the Lower Tester by executing either RCP/CL/DOSC/BV-03-I [RC Feature Characteristic Discovery] or RCP/CL/DOSC/BV-04-I [RC Settings Characteristic Discovery] or any other means.

 - The Lower Tester contains one instantiation of the Reconnection Configuration Service as a primary service including all defined characteristics.

 - The Upper Tester has access to the content of the Lower Tester’s database.

 - Choose the characteristic to be used for the test, either the RC Feature characteristic or the RC Settings Characteristic

• Test Procedure
1. Change the database from the Lower Tester to contain a specific, valid value for the RC Feature Characteristic value or the RC Settings Characteristic value, where not all feature bits are 0 and where neither any RFU bit, nor the Feature Extension bit is set. The value for E2E-CRC Supported bit is 1. The E2E-CRC is calculated.

2. Change one or more bits of the E2E-CRC in the Lower Tester's database for the RC Feature characteristic value or the RC Settings Characteristic value without recalculating the E2E-CRC.

3. Establish a connection between the IUT and Lower Tester.

4. Send a command from Upper Tester to request the IUT to read the RC Feature characteristic value or the RC Settings characteristic value from the Lower Tester.

5. After receipt of the expected request by the Lower Tester, send an ATT_Read_Response (0x0B) from the Lower Tester to the IUT.

6. Repeat the test procedure at least 3 times with different values for the RC Feature Characteristic value or RC Settings Characteristic value.

 • Expected Outcome

 Pass verdict

 The IUT sends a correctly formatted ATT_Read_Request (0x0A) to the Lower Tester, containing the handle specified by the Upper Tester.

 The IUT reports a CRC error to the Upper Tester for each iteration of the test.

4.4.4 RCP/CL/RCF/BI-02-I [Client Reads the RC Feature Characteristic with invalid CRC value]

 • Test Purpose

 Verify that a client IUT reads the RC Feature Characteristic and expects the checksum to be 0xFFFF.

 • Reference

 [3] 4.4

 • Initial Condition

 - The IUT knows the handle of the RC Feature characteristic contained in the Lower Tester by executing RCP/CL/DOSC/BV-03-I [RC Feature Characteristic Discovery] or any other means.

 - The Lower Tester contains one instantiation of the Reconnection Configuration Service as a primary service including all defined characteristics.

 - The Upper Tester has access to the content of the Lower Tester’s database.

 • Test Procedure

 1. Change the database from the Lower Tester to contain a specific, valid value for the RC Feature Characteristic value, where not all feature bits are 0 and where neither any RFU bit, nor the Feature Extension bit is set. The value for E2E-CRC Supported bit is 0. The E2E-CRC is set to one of 0xFFFE, 0xFF00 or 0x00FF.

 2. Establish a connection between the IUT and Lower Tester.
3. Send a command from Upper Tester to request the IUT to read the RC Feature characteristic value from the Lower Tester.

4. After receipt of the expected request by the Lower Tester, send an ATT_Read_Response (0x0B) from the Lower Tester to the IUT.

5. Repeat the test procedure at least 3 times with different values for the RC Feature Characteristic value and different values for the E2E-CRC field.

 • Expected Outcome

 Pass verdict

 The IUT sends a correctly formatted ATT_Read_Request (0x0A) to the Lower Tester, containing the handle specified by the Upper Tester.

 The IUT reports a CRC error to the Upper Tester.

4.5 Reconnection Configuration Settings

4.5.1 RCP/CL/RCSET/BV-01-I [Client Configures RC Settings for Notification]

 • Test Purpose
 Verify that a client IUT configures the Client Characteristic Configuration descriptor of the RC Settings characteristics to receive notifications.

 • Reference
 [3] 4.5

 • Initial Condition

 - Establish a connection between the IUT and Lower Tester.

 - The IUT knows the handle of the Client Characteristic Configuration descriptor of the RC Settings characteristic, either by executing RCP/CL/DOSC/BV-05-I [RC Settings Client Characteristic Configuration Discovery] or by any other means.

 - The Lower Tester contains one instantiation of the Reconnection Configuration Service as a primary service including all defined characteristics.

 - The value of the Client Characteristic Configuration descriptor of the Reconnection Configuration Settings characteristic in the Lower Tester's database is 0.

 • Test Procedure

 The Upper Tester sends a command to the client IUT to configure it to receive RC Settings characteristic notifications.

 • Expected Outcome

 Pass verdict

 IUT sends a correctly formatted ATT_Write_Request (0x12) to the Lower Tester, with the handle set to that of the Client Characteristic Configuration Descriptor for the RC Settings characteristic, and the value set to 0x0001.
4.5.2 RCP/CL/RCSET/BV-02-I [Client is able to Receive Multiple Notifications]

- **Test Purpose**
 Verify that a client IUT is able to receive multiple notifications of the RC Settings characteristic.

- **Reference**
 [3] 4.5

- **Initial Condition**
 - Establish a connection between the IUT and Lower Tester.
 - The client IUT is configured to receive notifications of the RC Settings characteristic.
 - The Lower Tester contains one instantiation of the Reconnection Configuration Service as a primary service including all defined characteristics.

- **Test Procedure**
 1. The Lower Tester sends an ATT_Handle_Value_Notification containing a RC Settings characteristic value A (defined in IXIT [6]) to the IUT.
 2. The client IUT reports the received characteristic value to the Upper Tester.
 3. The Lower Tester sends an ATT_Handle_Value_Notification containing a RC Settings characteristic value B (defined in IXIT [6]) to the IUT.
 4. The client IUT reports the received characteristic value to the Upper Tester.
 5. The Lower Tester sends an ATT_Handle_Value_Notification containing a RC Settings characteristic value A (defined in IXIT [6]) to the IUT.
 6. The client IUT reports the received characteristic value to the Upper Tester.

- **Expected Outcome**
 Pass verdict

 The client IUT reports 3 notifications of the RC Settings characteristic to the Upper Tester with the values A, B and A (defined in IXIT [6]) in this order.

4.5.3 RCP/CL/RCSET/BV-03-I [Upgrade to LESC Only]

- **Test Purpose**
 Verify that the IUT can execute the Upgrade to LESC Only procedure.

- **Reference**
 [3] 4.5.1, 4.6.11

- **Initial Condition**
 - The Lower Tester supports Secure Connections, including Security Mode 1, level 4.
 - Establish a connection between the IUT and Lower Tester.
- The Lower Tester or the IUT sets the value of the Client Characteristic Configuration descriptor of the Reconnection Configuration Control Point characteristic to 0x0002 for the established connection.

- Pair the IUT with the Lower Tester.

- The IUT has discovered all Reconnection Configuration Service and Bond Management Service characteristics.

- The IUT has read the Bond Management Feature characteristic of the Lower Tester.

- The Lower Tester contains one instantiation of the Reconnection Configuration Service as a primary service including all defined characteristics.

- The IUT reads the RC Feature characteristic to discover the supported features of the Lower Tester.

Test Procedure

1. The Upper Tester requests the IUT to upgrade to LESC Only.

2. The IUT sends an ATT Write Request with the attribute handle set to the handle of the RC Control Point Characteristic Value declaration. The value contains an opcode set to «Upgrade to LESC Only» and an 8-bit unsigned operand set to 0xFF.

3. The Lower Tester responds with an ATT Write Response.

4. The Lower Tester sends an ATT Handle Value Indication PDU with the attribute handle set to the handle of the RC Control Point Characteristic Value declaration and the value set to the «Procedure Response» opcode and followed by the «Upgrade to LESC Only» request opcode and the Result Code value of 0x01 (Success).

Expected Outcome

Pass verdict

The IUT sends the required PDUs in the requested order.

The IUT reports the successful command execution to the Upper Tester.

4.5.4 RCP/CL/RCSET/BV-04-I [Switch to OOB Pairing Only mode]

Test Purpose

Verify that a client IUT that is asked to initiate an OOB pairing, executes the procedure to force an out of band pairing.

Reference

Initial Condition

- Establish a connection between the IUT and Lower Tester.

- The Lower Tester or the IUT sets the value of the Client Characteristic Configuration descriptor of the Reconnection Configuration Control Point characteristic to 0x0002 for the established connection.
- Pair the IUT with the Lower Tester.
- The IUT has discovered all Reconnection Configuration Service and Bond Management Service characteristics.
- The IUT reads the Bond Management Feature characteristic of the Lower Tester.
- The Lower Tester contains one instantiation of the Reconnection Configuration Service as a primary service including all defined characteristics.
- The IUT reads the RC Feature characteristic to discover the supported features of the Lower Tester.

Test Procedure

1. The Upper Tester requests the IUT to Switch to OOB Pairing Only mode.
2. The IUT sends an ATT Write Request with the attribute handle set to the handle of the RC Control Point Characteristic Value declaration. The value contains an opcode set to «Switch OOB Pairing» and an 8-bit unsigned operand set to 0xFF.
3. The Lower Tester responds with an ATT Write Response.
4. The Lower Tester sends an ATT Handle Value Indication PDU with the attribute handle set to the handle of the RC Control Point Characteristic Value declaration and the value set to the «Procedure Response» opcode and followed by the «Switch OOB Pairing» request opcode and the Result Code value of 0x01 (Success).

Expected Outcome

Pass verdict

The IUT sends the requested PDUs in the requested order.

The IUT reports the successful command execution to the Upper Tester.

4.5.5 RCP/CL/RCSET/BV-05-I [Client Disables Reconnection Configuration Service]

Test Purpose

Verify that a client IUT that is asked to disable the Reconnection Configuration Service, executes the Limited Access procedure.

Reference

[3] 4.5.4, 4.6.13

[4] 3.2.1, 3.3.2.13

Initial Condition

- Establish a connection between the IUT and Lower Tester.
- The Lower Tester or the IUT sets the value of the Client Characteristic Configuration descriptor of the Reconnection Configuration Control Point characteristic to 0x0002 for the established connection.
- The IUT discovered all Reconnection Configuration Service and Bond Management Service characteristics.

- The Lower Tester contains one instantiation of the Reconnection Configuration Service as a primary service including all defined characteristics.

- The IUT reads the RC Feature characteristic to discover the supported features of the Lower Tester.

Test Procedure

1. The Upper Tester requests the IUT to execute the Limited Access Behavior procedure to disable the Reconnection Configuration Service.

2. The IUT sends an ATT Write Request with the attribute handle set to the handle of the RC Control Point Characteristic Value declaration. The value contains an opcode set to «Limited Access» and an 8-bit unsigned operand set to 0xFF.

3. The Lower Tester responds with an ATT Write Response.

4. The Lower Tester sends an ATT Handle Value Indication PDU with the attribute handle set to the handle of the RC Control Point Characteristic Value declaration and the value set to the «Procedure Response» opcode and followed by the «Limited Access» request opcode and the Result Code value of 0x01 (Success).

Expected Outcome

Pass verdict

The IUT sends the required PDUs.

The IUT reports the successful command execution to the Upper Tester.

4.5.6 RCP/CL/RCSET/BV-06-I [Client Enables Reconnection Configuration Service]

Test Purpose

Verify that a client IUT that is asked to enable the Reconnection Configuration Service, executes the Limited Access procedure.

Reference

[3] 4.5.4, 4.6.13

[4] 3.2.1, 3.3.2.13

Initial Condition

- Establish a connection between the IUT and Lower Tester.

- The Lower Tester or the IUT sets the value of the Client Characteristic Configuration descriptor of the Reconnection Configuration Control Point characteristic to 0x0002 for the established connection.
- The Lower Tester’s Reconnection Configuration Service was disabled e.g. by the IUT, by executing RCP/CL/RCSET/BV-05-I [Client Disables Reconnection Configuration Service] or as initial condition.

- The IUT discovered all Reconnection Configuration Service and Bond Management Service characteristics.

- The Lower Tester contains one instantiation of the Reconnection Configuration Service as a primary service including all defined characteristics.

- The IUT reads the RC Feature characteristic to discover the supported features of the Lower Tester.

• Test Procedure

1. The Upper Tester requests the IUT to execute the Limited Access Behavior procedure to enable access to the Reconnection Configuration Service.

2. The IUT sends an ATT Write Request with the attribute handle set to the handle of the RC Control Point Characteristic Value declaration. The value contains an opcode set to «Limited Access» and an 8-bit unsigned operand set to 0x00.

3. The Lower Tester responds with an ATT Write Response.

4. The Lower Tester sends an ATT Handle Value Indication PDU with the attribute handle set to the handle of the RC Control Point Characteristic Value declaration and the value set to the «Procedure Response» opcode and followed by the «Limited Access» request opcode and the Result Code value of 0x01 (Success).

• Expected Outcome

Pass verdict

The IUT sends the required PDUs.

The IUT reports the successful command execution to the Upper Tester.

4.6 Reconnection Configuration Procedures

4.6.1 RCP/CL/RCPROC/BV-01-I [Client Configures RC Control Point for Indications]

• Test Purpose

Verify that a client IUT configures the RC Control Point Client Characteristic Configuration declaration to receive indications.

• Reference

[3] 4.6

• Initial Condition

- Establish a connection between the IUT and Lower Tester.
- The IUT knows the handle of the Client Characteristic Configuration descriptor of the RC Control Point characteristic, either by executing RCP/CL/DOSC/BV-07-I [RC Control Point Client Characteristic Configuration Discovery] or by any other means.

- The Lower Tester contains one instantiation of the Reconnection Configuration Service as a primary service including all defined characteristics.

- The value of the Client Characteristic Configuration descriptor of the RC Control Point characteristic in the Lower Tester's database is 0.

• Test Procedure
 - The Upper Tester sends a command to the client IUT to configure the connected Lower Tester to enable RC Control Point characteristic indications.

• Expected Outcome
 Pass verdict

 IUT sends a correctly formatted ATT_Write_Request (0x12) to the Lower Tester, with the handle set to that of the Client Characteristic Configuration Descriptor of the RC Control Point characteristic, and the value set to 0x0002.

4.6.2 RCP/CL/RCPROC/BV-02-I [Client can Execute Enable Disconnect Procedure]

• Test Purpose
 Verify that a client can execute the Enable Disconnect procedure.

• Reference
 [3] 4.6.1
 [4] 3.3.1

• Initial Condition
 - Establish a connection between the IUT and Lower Tester.

 - The Lower Tester or the IUT sets the value of the Client Characteristic Configuration descriptor of the Reconnection Configuration Control Point characteristic to 0x0002 for the established connection.

 - The IUT knows the handle of the RC Control Point Characteristic Value declaration either by executing RCP/CL/DOSC/BV-06-I [RC Control Point Characteristic Discovery] or by any other means.

 - The Lower Tester contains one instantiation of the Reconnection Configuration Service as a primary service including all defined characteristics.

 - The IUT reads the RC Feature characteristic to discover the supported features of the Lower Tester.

• Test Procedure
1. The Upper Tester requests the IUT to execute the Enable Disconnect procedure.

2. The IUT sends an ATT Write Request with the attribute handle set to the handle of the RC Control Point Characteristic Value declaration and the value set to one octet containing the «Enable Disconnect» opcode.

3. The Lower Tester replies with an ATT_Write_Response (0x13).

4. The Lower Tester sends an ATT_Handle_Value_Indication (0x1D), with the attribute handle set to the handle of the RC Control Point characteristic value declaration and an attribute value containing three bytes: the opcode for «Procedure Response» Code, the request opcode for the «Enable Disconnect» Procedure and the Result Code value for Success (0x01).

5. The client IUT replies to the Lower Tester with an ATT_Handle_Value_Confirmation (0x1E) and reports the successful execution of the Enable Disconnect procedure to the Upper Tester.

 • Expected Outcome

 Pass verdict

 The IUT sends the required PDUs.

 The IUT reports the successful execution of the procedure to the Upper Tester.

4.6.3 RCP/CL/RCPROC/BV-03-I [Client reads Actual Communication Parameters]

 • Test Purpose

 Verify that a client IUT can execute the Get Actual Communication Parameter procedure.

 • Reference

 [3] 4.6.2

 • Initial Condition

 - Establish a connection between the IUT and Lower Tester.

 - The Lower Tester or the IUT sets the value of the Client Characteristic Configuration descriptor of the Reconnection Configuration Control Point characteristic to 0x0002 for the established connection.

 - The IUT knows the handle of the RC Control Point characteristic value declaration either by executing RCP/CL/DOSC/BV-06-I [RC Control Point Characteristic Discovery] or by any other means.

 - The Upper Tester knows the current connection parameters.

 - The Lower Tester contains one instantiation of the Reconnection Configuration Service as a primary service including all defined characteristics.

 - The IUT reads the RC Feature characteristic to discover the supported features of the Lower Tester.

 • Test Procedure

 1. The Upper Tester requests the IUT to execute the Get Actual Communication Parameter procedure.
2. The IUT sends an ATT Write Request with the attribute handle set to the handle of the RC Control Point Characteristic Value declaration and the value set to one octet containing the «Get Actual Communication Parameters» opcode.

3. The Lower Tester replies with an ATT_Write_Response (0x13).

4. The Lower Tester sends an ATT Handle Value Indication PDU with the attribute handle set to the handle of the RC Control Point Characteristic Value declaration and the value set to the «Client Parameter Indication» opcode, followed by the actual used Communication Parameters.

5. The IUT sends an ATT Handle Value Confirmation PDU and reports the successful execution of the Get Actual Communication Parameters procedure to the Upper Tester, including the received operand.

• Expected Outcome

 Pass verdict

 The IUT reports the received parameters to the Upper Tester.

 The IUT received operand is equal to the operand sent by the Lower Tester.

4.6.4 RCP/CL/RCPROC/BV-04-I [Client Proposes Settings in Group A]

• Test Purpose

 Verify that a client IUT can execute the Propose Settings Procedure with parameters that do not modify the current LE connection parameters.

• Reference

 [3] 4.6.3, 4.6.3.1

• Initial Condition

 - Establish a connection between the IUT and Lower Tester.
 - The Lower Tester or the IUT sets the value of the Client Characteristic Configuration descriptor of the Reconnection Configuration Control Point characteristic to 0x0002 for the established connection.
 - The IUT knows the handle of the RC Control Point characteristic value declaration either by executing RCP/CL/DOSC/BV-06-I [RC Control Point Characteristic Discovery] or by any other means.
 - The Lower Tester contains one instantiation of the Reconnection Configuration Service as a primary service including all defined characteristics.
 - The RC Feature characteristic stored in the Lower Tester`s database enables at least all features where the name of the feature starts with “Propose”.
 - The IUT reads the RC Feature characteristic to discover the supported features of the Lower Tester.

• Test Procedure
1. The Upper Tester sends a command to the client IUT to execute the Propose Settings procedure, choosing parameters for the group A parameters that are different from the parameters that are used by the Lower Tester and choosing parameters for the group B parameters that are all the same as the parameters used by the Lower Tester.

2. The client IUT sends an ATT_Write_Request (0x12) to the Lower Tester with the opcode for the Propose Settings procedure and an operand filled with the given parameters by the Upper Tester.

3. The Lower Tester replies with an ATT_Write_Response (0x13).

4. The Lower Tester sends an ATT_Handle_Value_Indication (0x1D), with the attribute handle set to the handle of the RC Control Point characteristic value declaration and an attribute value containing an opcode and an operand. The opcode is set to Procedure Response and the operand is set to the Propose Settings request opcode, followed by the Success (0x01) Result Code value.

5. The client IUT replies to the Lower Tester with an ATT_Handle_Value_Confirmation (0x1E) and reports the successful execution of the Propose Settings procedure to the Upper Tester.

Expected Outcome

Pass

The parameter size, parameter order and byte order sent by the IUT in step #2 shall be exactly as specified in [4].

4.6.5 RCP/CL/RCPROC/BV-05-I [Client Proposes Settings in Group B]

Test Purpose

Verify that a client IUT can change the current LE connection parameters.

Reference

[3] 4.6.3, 4.6.3.2

Initial Condition

- Establish a connection between the IUT and Lower Tester.
- The Lower Tester or the IUT sets the value of the Client Characteristic Configuration descriptor of the Reconnection Configuration Control Point characteristic to 0x0002 for the established connection.
- The IUT knows the handle of the RC Control Point characteristic value declaration either by executing RCP/CL/DOSC/BV-06-I [RC Control Point Characteristic Discovery] or by any other means.
- The Lower Tester contains one instantiation of the Reconnection Configuration Service as a primary service including all defined characteristics.
- The RC Feature characteristic stored in the Lower Testers database enables at least one feature where the name of the feature starts with “Propose”.
- The IUT reads the RC Feature characteristic to discover the supported features of the Lower Tester.
- The link layer role of the Lower Tester is the slave, the link layer role of the client IUT is the master.

Test Procedure

1. The Upper Tester sends a command to the client IUT to execute the Propose Settings procedure, choosing parameters for the group B parameters that are different from the parameters that are used by the Lower Tester and choosing parameters for the group A parameters that are all the same as the parameters used by the Lower Tester.

2. The client IUT sends an ATT_Write_Request (0x12) to the Lower Tester with the opcode for the Propose Settings procedure and an operand filled with the given parameters by the Upper Tester.

3. The Lower Tester replies with an ATT_Write_Response (0x13).

4. The Lower Tester sends an ATT_Handle_Value_Indication (0x1D), with the attribute handle set to the handle of the RC Control Point characteristic value declaration and an attribute value containing an opcode and an operand. The opcode is set to Procedure Response and the operand is set to the Propose Settings opcode, followed by the Proposal Accepted (0x09) Result Code value.

5. The client IUT replies to the Lower Tester with an ATT_Handle_Value_Confirmation (0x1E) and reports the successful execution of the Propose Settings procedure to the Upper Tester.

Expected Outcome

Pass verdict

The parameter size, parameter order and byte order shall be exactly as specified in [4].

4.6.6 **RCP/CL/RCPROC/BV-06-I [Client Activates Stored Settings]**

Test Purpose

Verify that a client IUT can execute the Activate Stored Settings procedure.

Reference

[3] 4.6.4, 4.6.4.1, 4.6.4.2

Initial Condition

- Establish a connection between the IUT and Lower Tester.

- The Lower Tester or the IUT sets the value of the Client Characteristic Configuration descriptor of the Reconnection Configuration Control Point characteristic to 0x0002 for the established connection.

- The Upper Tester knows the handle of the RC Control Point characteristic value declaration either by executing RCP/CL/DOSC/BV-06-I [RC Control Point Characteristic Discovery] or by any other means.

- The Lower Tester contains one instantiation of the Reconnection Configuration Service as a primary service including all defined characteristics.

- The RC Feature characteristic stored in the Lower Tester’s database enables at least all features where the name of the feature starts with “Propose”.

- The IUT reads the RC Feature characteristic to discover the supported features of the Lower Tester.

- The link layer role of the Lower Tester is the slave, the link layer role of the client IUT is the master.

- The values of the Lower Tester’s stored settings set number 0 are known.

• Test Procedure

1. The Upper Tester induces the IUT to execute the Activate Stored Settings procedure.

2. The IUT sends an ATT Write Request with the attribute handle set to the handle of the RC Control Point Characteristic Value declaration. The value contains an opcode set to «Activate Stored Settings» and an operand octet of 0.

3. The RC server IUT responds with an ATT Write Response.

 Depending on the content of the selected parameter set, the current connection parameters, the current advertising parameter, and the range of parameters acceptable to the IUTs Link Layer, the Lower Tester might respond in three different ways:

4. The Lower Tester sends an ATT Handle Value Indication PDU with the attribute handle set to the handle of the RC Control Point Characteristic Value declaration and the value set to the «Procedure Response» opcode and followed by the «Activate Stored Settings» request opcode and the Result Code value of 0x09 (Proposal Accepted).

 OR

5. The Lower Tester sends an ATT Handle Value Indication PDU with the attribute handle set to the handle of the RC Control Point Characteristic Value declaration and the value set to the «Procedure Response» opcode and followed by the «Activate Stored Settings» request opcode and the Result Code value of 0x01 (Success).

 OR

6. The Lower Tester sends an ATT Handle Value Indication PDU with the attribute handle set to the handle of the RC Control Point Characteristic Value declaration and the value set to the «Procedure Response» opcode and followed by the «Activate Stored Settings» request opcode and the Result Code value of 0x08 (Communication Parameters rejected).

In all cases, next follows:

7. The IUT sends an ATT Handle Value Confirmation.

Additionally, in case that the underlying Link Layer communication parameters have been changed:

8. The Lower Tester sends an ATT Handle Value Indication PDU with the attribute handle set to the handle of the RC Control Point Characteristic Value declaration and the value set to the «Client Parameter Indication» opcode followed by the actual communication parameters.

9. The IUT sends an ATT Handle Value Confirmation.

• Expected Outcome

 Pass verdict

 In all defined outcomes of the test case, the IUT shall send the specified PDUs.
The IUT reports the outcome of the Activate Stored Settings procedure to the Upper Tester.

4.6.7 RCP/CL/RCPROC/BV-07-I [Client Requests the Max Values]

- **Test Purpose**
 Verify that a client IUT is able to execute the Get Max Values procedure.

- **Reference**
 [3] 4.6.5

- **Initial Condition**
 - Establish a connection between the IUT and Lower Tester.
 - The Lower Tester or the IUT sets the value of the Client Characteristic Configuration descriptor of the Reconnection Configuration Control Point characteristic to 0x0002 for the established connection.
 - The IUT knows the handle of the RC Control Point characteristic value declaration either by executing RCP/CL/DOSC/BV-06-I [RC Control Point Characteristic Discovery] or by any other means.
 - The Lower Tester contains one instantiation of the Reconnection Configuration Service as a primary service including all defined characteristics.
 - The IUT reads the RC Feature characteristic to discover the supported features of the Lower Tester.

- **Test Procedure**
 The Upper Tester requests the IUT to execute the Get Max Values procedure.

 1. The IUT sends an ATT Write Request with the attribute handle set to the handle of the RC Control Point Characteristic Value declaration. The value contains an opcode set to «Get Max Values».

 2. The Lower Tester responds with an ATT Write Response.

 3. The Lower Tester sends an ATT Handle Value Indication PDU with the attribute handle set to the handle of the RC Control Point Characteristic Value declaration and the value set to the «Communication Parameter Response» op code, followed by the «Get Max Values» request op code and a Response Parameter, containing the Lower Tester’s maximum values.

 4. The IUT sends an ATT Handle Value Confirmation and reports the received maximum values to the Upper Tester.

- **Expected Outcome**
 Pass verdict
 The IUT sends the requested PDUs in the given order.
 The IUT reports the Lower Tester’s maximum values to the Upper Tester.
4.6.8 RCP/CL/RCPROC/BV-08-I [Client Requests the Min Values]

• Test Purpose
 Verify that a client IUT is able to execute the Get Min Values Procedure.

• Reference
 [3] 4.6.6

• Initial Condition
 - Establish a connection between the IUT and Lower Tester.
 - The Lower Tester or the IUT sets the value of the Client Characteristic Configuration descriptor of the Reconnection Configuration Control Point characteristic to 0x0002 for the established connection.
 - The IUT knows the handle of the RC Control Point characteristic value declaration either by executing RCP/CL/DOSC/BV-06-I [RC Control Point Characteristic Discovery] or by any other means.
 - The Lower Tester contains one instantiation of the Reconnection Configuration Service as a primary service including all defined characteristics.
 - The IUT reads the RC Feature characteristic to discover the supported features of the Lower Tester.

• Test Procedure
 The Upper Tester requests the IUT to execute the Get Min Values procedure.

 1. The IUT sends an ATT Write Request with the attribute handle set to the handle of the RC Control Point Characteristic Value declaration. The value contains an opcode set to «Get Min Values».
 2. The Lower Tester responds with an ATT Write Response.
 3. The Lower Tester sends an ATT Handle Value Indication PDU with the attribute handle set to the handle of the RC Control Point Characteristic Value declaration and the value set to the «Communication Parameter Response» opcode, followed by the «Get Min Values» request opcode and a Response Parameter, containing the Lower Tester´s minimum values.
 4. The IUT sends an ATT Handle Value Confirmation and reports the received minimum values to the Upper Tester.

• Expected Outcome
 Pass verdict

 The IUT sends the requested PDUs in the given order.

 The IUT reports the Lower Tester´s minimum values to the Upper Tester.

4.6.9 RCP/CL/RCPROC/BV-09-I [Client Requests Stored Values]

• Test Purpose
Verify that a client IUT is able to execute the Get Stored Values Procedure.

- **Reference**

 [3] 4.6.7

- **Initial Condition**
 - Establish a connection between the IUT and Lower Tester.
 - The Lower Tester or the IUT sets the value of the Client Characteristic Configuration descriptor of the Reconnection Configuration Control Point characteristic to 0x0002 for the established connection.
 - The IUT knows the handle of the RC Control Point characteristic value declaration either by executing RCP/CL/DOSC/BV-06-I [RC Control Point Characteristic Discovery] or by any other means.
 - The Lower Tester contains one instantiation of the Reconnection Configuration Service as a primary service including all defined characteristics.
 - The IUT reads the RC Feature characteristic to discover the supported features of the Lower Tester.
 - The Upper Tester knows the stored parameter sets implemented in the Lower Tester.

- **Test Procedure**

 The Upper Tester requests the IUT to execute the Get Stored Values procedure.

 1. The IUT sends an ATT Write Request with the attribute handle set to the handle of the RC Control Point Characteristic Value declaration. The value contains an opcode set to «Get Stored Values» and an operand octet with a Parameter Set chosen by the IUT.

 2. The Lower Tester responds with an ATT Write Response.

 Depending on the parameter sets supported by the Lower Tester, the test procedure has two possible outcomes:

 3. The Lower Tester sends an ATT Handle Value Indication PDU with the attribute handle set to the handle of the RC Control Point Characteristic Value declaration and the value set to the «Communication Parameter Response» opcode, followed by the «Get Stored Values» request opcode and a Response Parameter, containing the addressed parameter-set values.

 OR

 4. The Lower Tester sends an ATT Handle Value Indication PDU with the attribute handle set to the handle of the RC Control Point Characteristic Value declaration and the value set to the «Procedure Response» opcode and followed by the «Get Stored Values» request opcode and the Result Code value of 0x03 (Invalid Operand).

 In both cases:

 5. The IUT sends an ATT Handle Value Confirmation and reports the outcome of the procedure to the Upper Tester.

- **Expected Outcome**
Pass verdict

The IUT sends the requested PDUs in the given order.

The IUT reports the outcome of the procedure to the Upper Tester.

4.6.10 RCP/CL/RCPROC/BV-10-I [Client Sets White List Timer]

- Test Purpose
 Verify that a client IUT can execute the Set White List Timer procedure.

- Reference
 [3] 4.6.8

- Initial Condition
 - Establish a connection between the IUT and Lower Tester.
 - The Lower Tester or the IUT sets the value of the Client Characteristic Configuration descriptor of the Reconnection Configuration Control Point characteristic to 0x0002 for the established connection.
 - The IUT knows the handle of the RC Control Point characteristic value declaration either by executing RCP/CL/DOSC/BV-06-I [RC Control Point Characteristic Discovery] or by any other means.
 - The Lower Tester contains one instantiation of the Reconnection Configuration Service as a primary service including all defined characteristics.
 - The IUT reads the RC Feature characteristic to discover the supported features of the Lower Tester.
 - The IUT subscribed to RC Control Point Indications.

- Test Procedure
 The Upper Tester induces the IUT to execute the Set White List Timer procedure.

 1. The IUT sends an ATT Write Request with the attribute handle set to the handle of the RC Control Point Characteristic Value declaration. The value contains an opcode set to «Set White List Timer» and a 32-bit unsigned operand set to the chosen white list timer value.

 2. The Lower Tester responds with an ATT Write Response.

 3. The Lower Tester sends an ATT Handle Value Indication PDU with the attribute handle set to the handle of the RC Control Point Characteristic Value declaration and the value set to the «Procedure Response» opcode and followed by the «Set White List Timer» request opcode and the Result Code value of 0x01 (Success).

 4. The Lower Tester sends an ATT Handle Value Confirmation and reports the successful execution of the procedure to the Upper Tester.

- Expected Outcome
 Pass verdict
The IUT sends the requested PDUs in the given order.

The IUT reports the successful execution of the procedure to the Upper Tester.

4.6.11 RCP/CL/RCPROC/BV-11-I [Client Reads White List Timer]

- Test Purpose
 Verify that a client IUT can read the RC Server’s white list timer.

- Reference
 [3] 4.6.9

- Initial Condition
 - Establish a connection between the IUT and Lower Tester.
 - The Lower Tester or the IUT sets the value of the Client Characteristic Configuration descriptor of the Reconnection Configuration Control Point characteristic to 0x0002 for the established connection.
 - The IUT knows the handle of the RC Control Point characteristic value declaration either by executing RCP/CL/DOSC/BV-06-I [RC Control Point Characteristic Discovery] or by any other means.
 - The Upper Tester knows the current Lower Tester’s White List Timer value, the Lower Tester’s maximum and minimum White List Timer value.
 - The Lower Tester contains one instantiation of the Reconnection Configuration Service as a primary service including all defined characteristics.
 - The IUT reads the RC Feature characteristic to discover the supported features of the Lower Tester.

- Test Procedure
 The Upper Tester requests the IUT to execute the Read White List Timer procedure.

1. The IUT sends an ATT Write Request with the attribute handle set to the handle of the RC Control Point Characteristic Value declaration. The value contains an opcode set to «Get White List Timer» without any operands.

2. The Lower Tester responds with an ATT Write Response.

3. The Lower Tester sends an ATT Handle Value Indication PDU with the attribute handle set to the handle of the RC Control Point Characteristic Value declaration and the value set to the «White List Timer Response» opcode and followed by 3 32-bit unsigned integers, containing the Lower Tester’s current setting of the White List Timer, the minimum and maximum of the White List Timer.

4. The IUT sends an ATT Handle Value Confirmation and reports the received Lower Tester’s White List Timer values to the Upper Tester.

- Expected Outcome
 Pass verdict
The IUT sends the requested PDUs in the given order.

The IUT reports the received White List Timer values to the Upper Tester.

The reported White List Timer values are equal to the White List Timer values of the Lower Tester.
5 Test Case Mapping

The Test Case Mapping Table (TCMT) maps test cases to specific capabilities in the ICS. Profiles, protocols and services may define multiple roles, and it is possible that a product may implement more than one role. The product shall be tested in all roles for which support is declared in the ICS document.

The columns for the TCMT are defined as follows:

Item: contains an y/x reference, where y corresponds to the table number and x corresponds to the feature number as defined in the ICS Proforma for RCP [5]. If the item is defined with Protocol, Profile or Service abbreviation before y/x, the table and feature number referenced are defined in the abbreviated ICS proforma document.

Feature: recommended to be the primary feature defined in the ICS being tested or may be the test case name.

Test Case(s): the applicable test case identifiers required for Bluetooth Qualification if the corresponding y/x references defined in the Item column are supported.

For purpose and structure of the ICS/IXIT proforma and instructions for completing the ICS/IXIT proforma refer to the Bluetooth ICS and IXIT proforma document.

<table>
<thead>
<tr>
<th>Item</th>
<th>Feature</th>
<th>Test Case(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCP 4/1</td>
<td>RC Service Discovery</td>
<td>RCP/CL/DOSC/BV-01-I</td>
</tr>
<tr>
<td>RCP 4/2</td>
<td>Bond Management Service Discovery</td>
<td>RCP/CL/DOSC/BV-02-I</td>
</tr>
<tr>
<td>RCP 5/1</td>
<td>RC Feature Characteristic Discovery</td>
<td>RCP/CL/DOSC/BV-03-I</td>
</tr>
<tr>
<td>RCP 5/2</td>
<td>RC Settings Characteristic Discovery</td>
<td>RCP/CL/DOSC/BV-04-I</td>
</tr>
<tr>
<td>RCP 5/3</td>
<td>RC Settings Client Characteristic Configuration Discovery</td>
<td>RCP/CL/DOSC/BV-05-I</td>
</tr>
<tr>
<td>RCP 5/4</td>
<td>RC Control Point Characteristic Discovery</td>
<td>RCP/CL/DOSC/BV-06-I</td>
</tr>
<tr>
<td>RCP 5/5</td>
<td>RC Control Point Client Characteristic Configuration Discovery</td>
<td>RCP/CL/DOSC/BV-07-I</td>
</tr>
<tr>
<td>RCP 5/6</td>
<td>Bond Management Control Point Characteristic Discovery</td>
<td>RCP/CL/DOSC/BV-08-I</td>
</tr>
<tr>
<td>RCP 5/7</td>
<td>Bond Management Features Characteristic Discovery</td>
<td>RCP/CL/DOSC/BV-09-I</td>
</tr>
<tr>
<td>RCP 6/1 AND RCP 6/2</td>
<td>Client Reads the RC Feature Characteristic with E2E-CRC Supported set to 1</td>
<td>RCP/CL/RCF/BV-01-I</td>
</tr>
<tr>
<td>Item</td>
<td>Feature</td>
<td>Test Case(s)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>(RCP 6/1 OR RCP 7/2) AND RCP 6/2</td>
<td>Client Reads the RC Feature or RC Settings Characteristic with E2E-CRC Supported set to 1</td>
<td>RCP/CL/RCF/BI-01-I</td>
</tr>
<tr>
<td>RCP 6/1</td>
<td>Client Reads the RC Feature Characteristic with E2E-CRC Supported set to 0</td>
<td>RCP/CL/RCF/BV-02-I, RCP/CL/RCF/BI-02-I</td>
</tr>
<tr>
<td>RCP 7/1</td>
<td>Client Configures RC Settings for Notification</td>
<td>RCP/CL/RCSET/BV-01-I</td>
</tr>
<tr>
<td>RCP 7/1</td>
<td>Client is able to Receive Multiple Notifications</td>
<td>RCP/CL/RCSET/BV-02-I</td>
</tr>
<tr>
<td>RCP 6/16</td>
<td>Upgrade to LESC Only</td>
<td>RCP/CL/RCSET/BV-03-I</td>
</tr>
<tr>
<td>RCP 6/17</td>
<td>Switch to OOB Pairing Only mode</td>
<td>RCP/CL/RCSET/BV-04-I</td>
</tr>
<tr>
<td>RCP 6/19</td>
<td>Client Disables Reconnection Configuration Service</td>
<td>RCP/CL/RCSET/BV-05-I</td>
</tr>
<tr>
<td>RCP 6/19</td>
<td>Client Enables Reconnection Configuration Service</td>
<td>RCP/CL/RCSET/BV-06-I</td>
</tr>
<tr>
<td>RCP 8/1</td>
<td>Client Configures RC Control Point for Indications</td>
<td>RCP/CL/RCPROC/BV-01-I</td>
</tr>
<tr>
<td>RCP 6/3</td>
<td>Client can Execute Enable Disconnect Procedure</td>
<td>RCP/CL/RCPROC/BV-02-I</td>
</tr>
<tr>
<td>RCP 8/3</td>
<td>Client reads Actual Communication Parameters</td>
<td>RCP/CL/RCPROC/BV-03-I</td>
</tr>
<tr>
<td>RCP 8/4</td>
<td>Client Proposes Settings in Group A</td>
<td>RCP/CL/RCPROC/BV-04-I</td>
</tr>
<tr>
<td>RCP 8/5</td>
<td>Client Proposes Settings in Group B</td>
<td>RCP/CL/RCPROC/BV-05-I</td>
</tr>
<tr>
<td>RCP 8/6</td>
<td>Client Activates Stored Settings</td>
<td>RCP/CL/RCPROC/BV-06-I</td>
</tr>
<tr>
<td>RCP 8/7</td>
<td>Client Requests the Max Values</td>
<td>RCP/CL/RCPROC/BV-07-I</td>
</tr>
<tr>
<td>RCP 8/8</td>
<td>Client Requests the Min Values</td>
<td>RCP/CL/RCPROC/BV-08-I</td>
</tr>
<tr>
<td>RCP 8/9</td>
<td>Client Requests Stored Values</td>
<td>RCP/CL/RCPROC/BV-09-I</td>
</tr>
<tr>
<td>RCP 8/10</td>
<td>Client Sets White List Timer</td>
<td>RCP/CL/RCPROC/BV-10-I</td>
</tr>
<tr>
<td>Item</td>
<td>Feature</td>
<td>Test Case(s)</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>RCP 8/11</td>
<td>Client Reads White List Timer</td>
<td>RCP/CL/RCPROC/BV-11-I</td>
</tr>
</tbody>
</table>

Table 5.1: Test Case Mapping