Insulin Delivery Service (IDS)

Bluetooth® Test Suite

- Revision: IDS.TS.1.0.0
- Revision Date: 2018-06-20
- Group Prepared By: Medical Devices Working Group
- Feedback Email: med-main@bluetooth.org

Abstract:
This document defines test structures and procedures for the conformance test of Bluetooth devices implementing the Insulin Delivery Service Specification.
Revision History

<table>
<thead>
<tr>
<th>Revision Number</th>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0.9.0r00</td>
<td>2015-09-02</td>
<td>Initial Draft</td>
</tr>
<tr>
<td>D0.9.0r01</td>
<td>2016-04-15</td>
<td>Added baseline test cases and error handling cases for IDD Status Reader, Command and Record Access Control Points</td>
</tr>
<tr>
<td>D0.9.0r02</td>
<td>2016-05-23</td>
<td>Added error handling cases, updated test cases based on received comments and IDS rev IDS_D09r06</td>
</tr>
<tr>
<td>D0.9.0r03</td>
<td>2016-06-21</td>
<td>Updated test cases, added IDD History Data and test matrices</td>
</tr>
<tr>
<td>D0.9.0r04</td>
<td>2016-06-28</td>
<td>Updated test cases to IDS Spec IDS_D09r07</td>
</tr>
<tr>
<td>D0.9.0r05</td>
<td>2016-07-19</td>
<td>Updated test cases to DS Spec IDS_D09r08 and received comments</td>
</tr>
<tr>
<td>D0.9.0r06</td>
<td>2016-08-03</td>
<td>Minor update to initial test condition for E2E-Protection and other editorial changes</td>
</tr>
<tr>
<td>D0.9.0r07</td>
<td>2016-08-19</td>
<td>Added E2E-CRC and E2E-Counter calculations test cases, updated test case mapping and minor editorial changes</td>
</tr>
<tr>
<td>D0.9.0r08</td>
<td>2016-12-19</td>
<td>Incorporated feedback from BTI, WG, updated test spec to latest IDS D09r10 specification by removing BR/EDR test cases, and updated document to latest test template</td>
</tr>
<tr>
<td>D0.9.0r09</td>
<td>2017-02-09</td>
<td>Updated test spec based on findings from Informal IOP Tests, added new test case IDS/SEN/CBE/BI-08-C, updated TCMT and performed editorial changes</td>
</tr>
<tr>
<td>D0.9.0r10</td>
<td>2017-02-26</td>
<td>Updated test suite based on BTI’s feedback, modified Get Counter, RACP test procedures with looping mechanism and updated TCMT</td>
</tr>
<tr>
<td>D0.9.0r11</td>
<td>2017-02-28</td>
<td>Updated table references to Get Counter and RACP test procedures with looping mechanism</td>
</tr>
<tr>
<td>Revision Number</td>
<td>Date</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>D0.9.0r12</td>
<td>2017-08-04</td>
<td>Accepted BTI’s recommended changes from the 0.9 final review. Based on the formal IOP testing and WG’s feedback:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Removed TCs:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- IDS/SEN/CBE/BI-08-C [General Error Handling – ‘Insufficient Authorization’],</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- IDS/SEN/CBE/BI-06-C [General Error Handling – ‘Missing CRC’],</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- IDS/SEN/RAE/BI-02-C [RACP Specific Error – ‘Op Code not Supported’],</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- IDS/SEN/C/BI-01-C by including TC into IDS/SEN/IDDR/BV-01-C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- IDS/SEN/C/BI-02-C by including TC into IDS/SEN/IDDC/BV-01-C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- IDS/SEN/C/BI-03-C by including TC into IDS/SEN/IDDC/BV-03-C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added TC IDS/SEN/IDDC/BI-08-C [Activate Profile Templates Procedure – Procedure not applicable, Updated IDS/SEN/IDDC/BV-32-C,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IDS/SEN/IDDC/BI-05-C, and TCs for template writing procedures based on the extended plausibility check to verify that each time block is only sent once within the transaction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated BI test cases per new definitions for response code values.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added IXIT references to IDS/SEN/IDDC/BV-10-C to 13-C, IDS/SEN/IDDC/BV-32-C, IDS/SEN/IDDC/BV-33-C, IDS/SEN/IDDC/BV-34-C,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IDS/SEN/IDDC/BI-07-C and IDS/SEN/IDDC/BI-08-C.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated TCMT and references to IDS Rev. d09r15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Due to the addition of Table 2 (Transport Requirements) to the IDS.ICS updated the TCMT and removed from the Get Counter, RACP and IDD History procedures the Adjustments for IOP sections as the formal IOP has been completed</td>
</tr>
<tr>
<td>D1.0.0r00</td>
<td>2017-10-06</td>
<td>Incorporated feedback from BTI</td>
</tr>
<tr>
<td>D1.0.0r01</td>
<td>2017-11-02</td>
<td>Updated TS document to IDS d10r01 specification by renaming RACP to IDD RACP</td>
</tr>
<tr>
<td>D1.0.0r02</td>
<td>2017-11-30</td>
<td>Incorporated feedback from BTI, updated Identifier Abbreviations in Table 4.1 and applicable TC identifier and TCMT</td>
</tr>
<tr>
<td>D1.0.0r03</td>
<td>2018-01-25</td>
<td></td>
</tr>
<tr>
<td>Revision Number</td>
<td>Date</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>D1.0.0r04</td>
<td>2018-03-29</td>
<td>Incorporated feedback from BTI and updated TCMT</td>
</tr>
<tr>
<td>D1.0.0r05</td>
<td>2018-05-15</td>
<td>Updated IDD RACP looping test cases to refer to common Table 4.20 and removed additional IDD RACP – Operators and Operands tables; combined IDS/SEN/RCP/BV-04-C and IDS/SEN/RCP/BV-05-C, and IDS/SEN/RCP/BV-09-C into a table test, updated TCMT and Incorporated feedback from BTI.</td>
</tr>
<tr>
<td>D1.0.0r06</td>
<td>2018-05-25</td>
<td>Incorporated feedback from BTI by merging IDS/SEN/CCP/BV-29-C and IDS/SEN/CCP/BV-30-C into one test case, combined IDS/SEN/CCP/BV-04-C and IDS/SEN/CCP/BV-05-C into a test table, updated TCMT and updated revision date to yyyy-mm-dd format</td>
</tr>
<tr>
<td>1.0.0</td>
<td>2018-06-20</td>
<td>Approved by BTI. Prepared for publication.</td>
</tr>
</tbody>
</table>

Contributors

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harald Prinzhorn</td>
<td>F. Hoffmann-La Roche AG</td>
</tr>
<tr>
<td>Nathaniel Hamming</td>
<td>F. Hoffmann-La Roche AG</td>
</tr>
<tr>
<td>Ismail Mohamud</td>
<td>E-Qualus Partners, LLC</td>
</tr>
<tr>
<td>Jörg Brakensiek</td>
<td>E-Qualus Partners, LLC</td>
</tr>
<tr>
<td>Leif-Alexandre Aschehoug</td>
<td>Nordic Semiconductor ASA</td>
</tr>
<tr>
<td>Christoph Fischer</td>
<td>F. Hoffmann-La Roche AG</td>
</tr>
<tr>
<td>Florian Kubala</td>
<td>F. Hoffmann-La Roche AG</td>
</tr>
</tbody>
</table>
Use of this specification is your acknowledgement that you agree to and will comply with the following notices and disclaimers. You are advised to seek appropriate legal, engineering, and other professional advice regarding the use, interpretation, and effect of this specification.

Use of Bluetooth specifications by members of Bluetooth SIG is governed by the membership and other related agreements between Bluetooth SIG and its members, including those agreements posted on Bluetooth SIG’s website located at www.bluetooth.com. Any use of this specification by a member that is not in compliance with the applicable membership and other related agreements is prohibited and, among other things, may result in (i) termination of the applicable agreements and (ii) liability for infringement of the intellectual property rights of Bluetooth SIG and its members.

Use of this specification by anyone who is not a member of Bluetooth SIG is prohibited and is an infringement of the intellectual property rights of Bluetooth SIG and its members. The furnishing of this specification does not grant any license to any intellectual property of Bluetooth SIG or its members. THIS SPECIFICATION IS PROVIDED “AS IS” AND BLUETOOTH SIG, ITS MEMBERS AND THEIR AFFILIATES MAKE NO REPRESENTATIONS OR WARRANTIES AND DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, TITLE, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR THAT THE CONTENT OF THIS SPECIFICATION IS FREE OF ERRORS. For the avoidance of doubt, Bluetooth SIG has not made any search or investigation as to third parties that may claim rights in or to any specifications or any intellectual property that may be required to implement any specifications and it disclaims any obligation or duty to do so.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, BLUETOOTH SIG, ITS MEMBERS AND THEIR AFFILIATES DISCLAIM ALL LIABILITY ARISING OUT OF OR RELATING TO USE OF THIS SPECIFICATION AND ANY INFORMATION CONTAINED IN THIS SPECIFICATION, INCLUDING LOST REVENUE, PROFITS, DATA OR PROGRAMS, OR BUSINESS INTERRUPTION, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, AND EVEN IF BLUETOOTH SIG, ITS MEMBERS OR THEIR AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF THE DAMAGES.

If this specification is a prototyping specification, it is solely for the purpose of developing and using prototypes to verify the prototyping specifications at Bluetooth SIG sponsored IOP events. Prototyping Specifications cannot be used to develop products for sale or distribution and prototypes cannot be qualified for distribution.

Products equipped with Bluetooth wireless technology (“Bluetooth Products”) and their combination, operation, use, implementation, and distribution may be subject to regulatory controls under the laws and regulations of numerous countries that regulate products that use wireless non-licensed spectrum. Examples include airline regulations, telecommunications regulations, technology transfer controls and health and safety regulations. You are solely responsible for complying with all applicable laws and regulations and for obtaining any and all required authorizations, permits, or licenses in connection with your use of this specification and development, manufacture, and distribution of Bluetooth Products. Nothing in this specification provides any information or assistance in connection with complying with applicable laws or regulations or obtaining required authorizations, permits, or licenses.

Bluetooth SIG is not required to adopt any specification or portion thereof. If this specification is not the final version adopted by Bluetooth SIG’s Board of Directors, it may not be adopted. Any specification adopted by Bluetooth SIG’s Board of Directors may be withdrawn, replaced, or modified at any time. Bluetooth SIG reserves the right to change or alter final specifications in accordance with its membership and operating agreements.

Copyright © 2016–2018. All copyrights in the Bluetooth Specifications themselves are owned by Apple Inc., Ericsson AB, Intel Corporation, Lenovo (Singapore) Pte. Ltd., Microsoft Corporation, Nokia Corporation, and Toshiba Corporation. The Bluetooth word mark and logos are owned by Bluetooth SIG, Inc. Other third-party brands and names are the property of their respective owners.
Contents

1 Scope .. 10

2 References, definitions, and abbreviations .. 11
 2.1 References .. 11
 2.2 Definitions ... 11
 2.3 Acronyms and abbreviations .. 11

3 Test suite structure (TSS) ... 12
 3.1 Overview ... 12
 3.2 Test Strategy ... 12
 3.3 Test groups ... 13

4 Test cases (TC) .. 14
 4.1 Introduction .. 14
 4.1.1 Test case identification conventions .. 14
 4.1.2 Conformance .. 15
 4.1.3 Pass/Fail verdict conventions ... 15
 4.2 Setup Preambles ... 15
 4.2.1 ATT Bearer on LE Transport .. 15
 4.2.2 Control Point Configuration Preamble .. 15
 4.3 Service Definition ... 16
 4.3.1 IDS/SEN/SD/BV-01-C [Service definition over LE] ... 17
 4.4 Characteristic Declaration ... 18
 4.4.1 IDS/SEN/DEC/BV-01-C [Characteristic Declaration – ‘IDD Status Changed’] 19
 4.4.2 IDS/SEN/DEC/BV-02-C [Characteristic Declaration – ‘IDD Status’] 19
 4.4.3 IDS/SEN/DEC/BV-03-C [Characteristic Declaration – ‘IDD Annunciation Status’] 19
 4.4.4 IDS/SEN/DEC/BV-04-C [Characteristic Declaration – ‘IDD Features’] 19
 4.4.5 IDS/SEN/DEC/BV-05-C [Characteristic Declaration – ‘IDD Status Reader Control Point’] 19
 4.4.6 IDS/SEN/DEC/BV-06-C [Characteristic Declaration – ‘IDD Command Control Point’] 19
 4.4.7 IDS/SEN/DEC/BV-07-C [Characteristic Declaration – ‘IDD Command Data’] 19
 4.4.8 IDS/SEN/DEC/BV-08-C [Characteristic Declaration – ‘IDD Record Access Control Point’] 19
 4.4.9 IDS/SEN/DEC/BV-09-C [Characteristic Declaration – ‘IDD History Data’] 19
 4.5 Characteristic Descriptors .. 19
 4.5.1 IDS/SEN/DES/BV-01-C [IDD Status Changed – ‘Client Characteristic Configuration Descriptor’] 20
 4.5.2 IDS/SEN/DES/BV-02-C [IDD Status – ‘Client Characteristic Configuration Descriptor’] 20
 4.5.3 IDS/SEN/DES/BV-03-C [IDD Annunciation Status – ‘Client Characteristic Configuration Descriptor’] 20
 4.5.4 IDS/SEN/DES/BV-04-C [IDD Status Reader Control Point – ‘Client Characteristic Configuration Descriptor’] 20
 4.5.5 IDS/SEN/DES/BV-05-C [IDD Command Control Point – ‘Client Characteristic Configuration Descriptor’] 20
 4.5.6 IDS/SEN/DES/BV-06-C [IDD Command Data – ‘Client Characteristic Configuration Descriptor’] 20
 4.5.7 IDS/SEN/DES/BV-07-C [IDD Record Access Control Point – ‘Client Characteristic Configuration Descriptor’] 20
 4.5.8 IDS/SEN/DES/BV-08-C [IDD History Data – ‘Client Characteristic Configuration Descriptor’] 21
 4.6 Configure Indication and Notification ... 21
 4.6.1 IDS/SEN/CON/BV-01-C [Configure Indication – ‘IDD Status Changed’] 21
 4.6.2 IDS/SEN/CON/BV-02-C [Configure Indication – ‘IDD Status’] .. 22
 4.6.3 IDS/SEN/CON/BV-03-C [Configure Indication – ‘IDD Annunciation Status’] 22
 4.6.4 IDS/SEN/CON/BV-04-C [Configure Indication – ‘IDD Status Reader Control Point’] 22
 4.6.5 IDS/SEN/CON/BV-05-C [Configure Indication – ‘IDD Command Control Point’] 22

Insulin Delivery Service (IDS) / Test Suite

Bluetooth SIG Proprietary and Confidential
4.6.6 IDS/SEN/CON/BV-06-C [Configure Notification – ‘IDD Command Data’]..22
4.6.7 IDS/SEN/CON/BV-07-C [Configure Indication – ‘IDD Record Access Control Point’]..........................22
4.6.8 IDS/SEN/CON/BV-08-C [Configure Notification – ‘IDD History Data’]..22
4.7 Characteristic Read ..22
4.7.1 IDD Status Changed, IDD Status, IDD Annunciation Status and IDD Features Characteristic Read ...22
4.7.1.1 IDS/SEN/CR/BV-01-C [Characteristic Read – ‘IDD Status Changed’]...23
4.7.1.2 IDS/SEN/CR/BV-02-C [Characteristic Read – ‘IDD Status’]...23
4.7.1.3 IDS/SEN/CR/BV-03-C [Characteristic Read – ‘IDD Annunciation Status’].................................23
4.7.1.4 IDS/SEN/CR/BV-04-C [Characteristic Read – ‘IDD Features’]..23
4.7.2 IDS/SEN/CR/BV-05-C [Verify E2E-CRC and E2E-Counter calculations – IDD Status Reader CP].....23
4.7.3 IDS/SEN/CR/BV-06-C [Verify E2E-CRC and E2E-Counter calculations – Multiple Control Points]....24
4.8 IDD Status Reader Control Point Procedures ..25
4.8.1 IDS/SEN/RCP/BV-01-C [Reset Status Procedure]..25
4.8.2 Get Active Bolus IDs Procedure ..26
4.8.2.1 IDS/SEN/RCP/BV-02-C [Get Active Bolus IDs Procedure – Single Bolus].................................27
4.8.2.2 IDS/SEN/RCP/BV-03-C [Get Active Bolus IDs Procedure – Multiple Boluses]............................27
4.8.3 Get Active Bolus Delivery Procedure ...27
4.8.3.1 IDS/SEN/RCP/BV-04-C [Get Active Bolus Delivery Procedure – Operand set to Programmed].....28
4.8.3.2 IDS/SEN/RCP/BV-05-C [Get Active Bolus Delivery Procedure – Operand set to Delivered]........28
4.8.4 IDS/SEN/RCP/BV-06-C [Get Active Basal Rate Delivery Procedure]...28
4.8.5 IDS/SEN/RCP/BV-07-C [Get Total Daily Insulin Status Procedure]..28
4.8.6 IDS/SEN/RCP/BV-08-C [Get Counter Procedure]..29
4.8.7 Get Delivered Insulin and Insulin On Board Procedures ...30
4.8.7.1 IDS/SEN/RCP/BV-09-C [Get Delivered Insulin Procedure]...31
4.8.7.2 IDS/SEN/RCP/BV-10-C [Get Insulin On Board Procedure]...31
4.8.8 IDD Status Reader Control Point – Error Handling ...32
4.8.8.1 IDS/SEN/RCP/BI-01-C [Get Active Bolus Delivery Procedure – Procedure not applicable].........32
4.8.8.2 IDS/SEN/RCP/BI-02-C [Get Active Bolus Delivery Procedure – Invalid Operand]......................33
4.8.8.3 IDS/SEN/RCP/BI-03-C [Get Active Basal Rate Delivery Procedure – Procedure not applicable]....33
4.8.8.4 IDS/SEN/RCP/BI-04-C [Get Counter Procedure – Invalid Operand]...34
4.8.8.5 IDS/SEN/RCP/BI-05-C [Status Reader CP – Op code not supported]...35
4.9 IDD Command Control Point Procedures ..35
4.9.1 IDS/SEN/CCP/BV-01-C [Set Therapy Control State Procedure]...35
4.9.2 IDS/SEN/CCP/BV-02-C [Set Flight Mode Procedure]...36
4.9.3 IDS/SEN/CCP/BV-03-C [Snooze Annunciation Procedure]..37
4.9.4 Confirm Annunciation Procedure ..38
4.9.4.1 IDS/SEN/CCP/BV-04-C [Confirm Annunciation Procedure – Snoozed to Confirmed]..............39
4.9.4.2 IDS/SEN/CCP/BV-05-C [Confirm Annunciation Procedure – Pending to Confirmed]..............39
4.9.5 Read a Profile Template Procedure ..39
4.9.5.1 IDS/SEN/CCP/BV-06-C [Read Basal Rate Profile Template Procedure].....................................41
4.9.5.2 IDS/SEN/CCP/BV-07-C [Read ISF Profile Template Procedure]...41
4.9.5.3 IDS/SEN/CCP/BV-08-C [Read i2CHO Ratio Profile Template Procedure]..............................41
4.9.5.4 IDS/SEN/CCP/BV-09-C [Read Target Glucose Range Profile Template Procedure]................41
4.9.6 Write a Profile Template Procedure ...41
4.9.6.1 IDS/SEN/CCP/BV-10-C [Write Basal Rate Profile Template Procedure].................................43
4.9.6.2 IDS/SEN/CCP/BV-11-C [Write ISF Profile Template Procedure]...43
4.9.6.3 IDS/SEN/CCP/BV-12-C [Write i2CHO Ratio Profile Template Procedure]...............................43
4.9.6.4 IDS/SEN/CCP/BV-13-C [Write Target Glucose Range Profile Template Procedure]...............43
4.9.7 IDS/SEN/CCP/BV-14-C [Set TBR Adjustment Procedure – Without a TBR Template]................43
4.9.8 IDS/SEN/CCP/BV-15-C [Set TBR Adjustment Procedure – With a TBR Template]......................44
4.9.9 IDS/SEN/CCP/BV-16-C [Cancel TBR Adjustment Procedure]..45
4.9.10 IDS/SEN/CCP/BV-17-C [Get TBR Template Procedure]...46
4.9.11 IDS/SEN/CCP/BV-18-C [Set TBR Template Procedure]...46
4.9.12 IDS/SEN/CCP/BV-19-C [Set Bolus Procedure – Without a Bolus Template]...................47
4.9.13 IDS/SEN/CCP/BV-20-C [Set Bolus Procedure – With a Bolus Template]......................48
4.9.14 IDS/SEN/CCP/BV-21-C [Cancel Bolus Procedure]..50
4.9.15 IDS/SEN/CCP/BV-22-C [Get Available Boluses Procedure]..51
4.9.16 IDS/SEN/CCP/BV-23-C [Get Bolus Template Procedure]...51
4.9.17 IDS/SEN/CCP/BV-24-C [Set Bolus Template Procedure]..51
4.9.18 IDS/SEN/CCP/BV-25-C [Get Template Status and Details Procedure]...........................52
4.9.19 IDS/SEN/CCP/BV-26-C [Reset Template Status Procedure].......................................53
4.9.20 IDS/SEN/CCP/BV-27-C [Activate Profile Templates Procedure].................................54
4.9.21 IDS/SEN/CCP/BV-28-C [Get Activated Profile Templates Procedure].........................55
4.9.22 IDS/SEN/CCP/BV-29-C [Start and Stop Priming Procedures]......................................56
4.9.23 IDS/SEN/CCP/BV-30-C [Set Initial Reservoir Fill Level Procedure]............................57
4.9.24 IDS/SEN/CCP/BV-31-C [Reset Reservoir Insulin Operation Time Procedure]...................57
4.9.25 IDS/SEN/CCP/BV-32-C [Get Max Bolus Amount Procedure].......................................59
4.9.26 IDS/SEN/CCP/BV-33-C [Set Max Bolus Amount Procedure].......................................59
4.9.27 IDD Command Control Point – Error Handling ..60
4.9.27.1 IDS/SEN/CCP/BI-01-C [Command CP – Op Code not supported]...............................60
4.9.27.2 IDS/SEN/CCP/BI-02-C [Set Therapy Control State Procedure – Invalid operand]61
4.9.27.3 IDS/SEN/CCP/BI-03-C [Write Basal Rate Profile Template Procedure – Parameter out of range] 62
4.9.27.4 IDS/SEN/CCP/BI-04-C [Stop Priming Procedure – Procedure not applicable]63
4.9.27.5 IDS/SEN/CCP/BI-05-C [Write Basal Rate Profile Template Procedure – Plausibility check failed within a transaction] ..64
4.9.27.6 IDS/SEN/CCP/BI-06-C [Write Basal Rate Profile Template Procedure – Plausibility check failed at the end of a transaction] ..65
4.9.27.7 IDS/SEN/CCP/BI-07-C [Set Bolus Procedure – Maximum Bolus Number Reached]66
4.9.27.8 IDS/SEN/CCP/BI-08-C [Activate Profile Templates Procedure – Procedure not applicable]67
4.10 IDD Record Access Control Point Procedures ..68
4.10.1 IDS/SEN/RAN/BV-01-C [Report Number of Stored Records Procedure].................68
4.10.2 IDS/SEN/RAN/BV-02-C [Report Number of Stored Records Procedure - With no records] 70
4.10.3 IDS/SEN/RAD/BV-01-C [Delete Stored Records Procedure].......................................71
4.10.4 IDS/SEN/RAR/BV-01-C [Report Stored Records Procedure]..72
4.10.5 IDS/SEN/RAA/BV-01-C [Abort Operation Procedure]..74
4.10.6 IDD Record Access Control Point Procedures – Error Handling74
4.10.6.1 IDS/SEN/RAE/BV-01-C [Report Stored Records – ‘No Records Found’]......................75
4.10.6.2 IDS/SEN/RAE/BV-02-C [IDD RACP Specific Error – ‘Client Characteristic Configuration Descriptor Improperly Configured’]..75
4.10.6.3 IDS/SEN/RAE/BV-03-C [IDD RACP Specific Error – ‘Operand not supported’]76
4.10.6.4 IDS/SEN/RAE/BV-04-C [IDD RACP Specific Error – ‘Procedure Already in Progress’] ..76
4.10.6.5 IDS/SEN/RAE/BV-05-C [IDD RACP Specific Error – ‘Operator not Supported’]77
4.10.6.6 IDS/SEN/RAE/BV-06-C [IDD RACP Specific Error – ‘Invalid Operator’]......................78
4.11 IDD History Data ..78
4.11.1 IDS/SEN/HDE/BV-01-C [IDD History Data – ‘Chronological order of History Events and Sequence Number Incremented by 1’] ..78
4.11.2 IDS/SEN/HDE/BV-02-C [IDD History Data – ‘Event Types’]..79
4.12 General Error Handling ..82
4.12.1 IDS/SEN/CBE/BV-01-C [General Error Handling – ‘Client Characteristic Configuration Descriptor Improperly Configured’]..82
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.12.3</td>
<td>IDS/SEN/CBE/BI-03-C [General Error Handling – ‘Procedure Already in Progress’]</td>
<td>83</td>
</tr>
</tbody>
</table>

5 Test Case Mapping .. 87

6 IDD Status Reader CP Test Matrix .. 92

7 IDD Command CP Test Matrix .. 93

8 IDD RACP Test Matrix ... 94
1 Scope

This Bluetooth document contains the Test Suite Structure (TSS) and Test Cases (TC) to test the Insulin Delivery Service (IDS) Specification.

The objective of this test suite document is to provide a basis for conformance tests for Bluetooth devices giving a high probability of air interface interoperability between different manufacturers’ Bluetooth devices.
2 References, definitions, and abbreviations

2.1 References

This Bluetooth document incorporates, by dated or undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed hereafter.

[1] Bluetooth Core Specification v4 or later
[3] Insulin Delivery Service Specification
[4] Insulin Delivery Profile Specification
[5] ICS Proforma for Insulin Delivery Service
[6] GATT Test Suite GATT.TS
[7] Characteristic and Descriptor descriptions are accessible via the Bluetooth SIG Assigned Numbers
[8] Insulin Delivery Service Implementation eXtra Information for Test, IXIT

2.2 Definitions

For the purpose of this Bluetooth document, the definitions in [1], [2], [3] and [4] apply.

2.3 Acronyms and abbreviations

For the purpose of this Bluetooth document, the abbreviations in [1], [2], [3] and [4] apply.
3 Test suite structure (TSS)

3.1 Overview

The Insulin Delivery Service (IDS) requires the presence of ATT, GAP, SM, and GATT. This is illustrated in Figure 3.1.

![Insulin Delivery Service Test Model](image)

Figure 3.1: Insulin Delivery Service Test Model

3.2 Test Strategy

The test objectives are to verify functionality of the Insulin Delivery Service (IDS) within a Bluetooth Host and enable interoperability between Bluetooth Hosts on different devices. The testing approach is to cover mandatory and optional requirements in the service specification and to match these to the support of the IUT as described in the ICS.

The test equipment shall provide an implementation of the Radio Controller and the parts of the Host needed to perform the test cases defined in the Insulin Delivery Service (IDS) Test Suite. For some test cases, it is necessary to stimulate the IUT from an Upper Tester. In practice, this could be implemented as a special test interface, a man-machine interface (MMI), or another interface supported by the IUT.

The IDS test suite contains Valid Behavior (BV) tests complemented with Invalid Behavior (BI) tests where required. The test coverage mirrored in the test suite structure is the result of a process that started with catalogued specification requirements that were logically grouped and assessed for testability enabling coverage in defined test purposes.

The test cases verify that the E2E-Counter and E2E-CRC fields are either present with the appropriate values or not present according to the requirement of the service considering the IUT support for E2E-Protection.
3.3 Test groups

The following test groups have been defined:

- Service Definition
 This group verifies the service definition.

- Characteristic Declaration
 This group verifies the presence and contents of characteristics declarations.

- Characteristic Descriptors
 This group verifies the presence and contents of characteristic descriptors.

- Configure Indication and Notification
 This group verifies that characteristics can be configured for notifications or indications.

- Characteristic Read
 This group verifies that characteristics that support reading can be read and verifies the format and value of the characteristic values.

- IDD Status Reader Control Point Procedures
 This group verifies valid IUT behavior of the implemented IDD Status Reader Control Point procedures and error handling. These procedures include resetting the IDD Status Changed flags, getting insulin therapy relevant status information (e.g., currently running boli or basal rate) and getting time dependent device information (e.g., remaining warranty time or elapsed device usage time).

- IDD Command Control Point Procedures
 This group verifies valid IUT behavior of the implemented IDD Command Control Point procedures and error handling. These procedures include, but are not limited to, remote control of the Insulin Delivery Device (IDD), adjusting insulin therapy parameters, storing insulin therapy specific templates on the IDD, and performing IDD maintenance.

- IDD Record Access Control Point Procedures
 This group verifies valid IUT behavior of the implementation of procedures and error handling related to handling of historical data as defined in the service specification. These procedures include aborting procedures currently being executed, reporting the number of stored records, reporting the stored records and deleting the stored records.

- IDD History Data
 This group verifies valid IUT behavior of the implementation of procedures related to handling IDD History Data and history events.

- General Error Handling
 This group verifies the IUT operation for handling of general Server error situations (e.g. E2E Protection errors).
4 Test cases (TC)

4.1 Introduction

4.1.1 Test case identification conventions

Test cases shall be assigned unique identifiers per the conventions in [2]. The convention used here is `<spec abbreviation>/<IUT role>/<class>/<feat>/<func>/<subfunc>/<cap>/<xx>-<nn>-<y>`. Bolded ID parts shall appear in the order prescribed. Non-bolded ID parts (if applicable) shall appear between the bolded parts. The order of the non-bolded parts may vary from test suite to test suite, but shall be consistent within each individual test suite.

<table>
<thead>
<tr>
<th>Identifier Abbreviation</th>
<th>Spec Identifier <spec abbreviation></th>
</tr>
</thead>
<tbody>
<tr>
<td>IDS</td>
<td>Insulin Delivery Service</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identifier Abbreviation</th>
<th>Role Identifier <IUT role></th>
</tr>
</thead>
<tbody>
<tr>
<td>SEN</td>
<td>Sensor Role</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identifier Abbreviation</th>
<th>Feature Identifier <feat></th>
</tr>
</thead>
<tbody>
<tr>
<td>CBE</td>
<td>Common Behavior of Control Point – Error Handling</td>
</tr>
<tr>
<td>CCP</td>
<td>IDD Command Control Point Procedures</td>
</tr>
<tr>
<td>CCPE</td>
<td>IDD Command Control Point Procedures – Error Handling</td>
</tr>
<tr>
<td>CON</td>
<td>Configure Indication and Notification</td>
</tr>
<tr>
<td>CR</td>
<td>Characteristic Read</td>
</tr>
<tr>
<td>DEC</td>
<td>Characteristic Declaration</td>
</tr>
<tr>
<td>DES</td>
<td>Characteristic Descriptors</td>
</tr>
<tr>
<td>HDE</td>
<td>IDD History Data Events</td>
</tr>
<tr>
<td>RAA</td>
<td>IDD RACP – Abort Procedure</td>
</tr>
<tr>
<td>RAD</td>
<td>IDD RACP – Delete Procedure</td>
</tr>
<tr>
<td>RAE</td>
<td>IDD RACP – Error Handling</td>
</tr>
<tr>
<td>RAN</td>
<td>IDD RACP – Number Procedure</td>
</tr>
<tr>
<td>RAR</td>
<td>IDD RACP – Report Procedure</td>
</tr>
<tr>
<td>RCP</td>
<td>IDD Status Reader Control Point Procedures</td>
</tr>
<tr>
<td>RCPE</td>
<td>IDD Status Reader Control Point Procedures – Error Handling</td>
</tr>
<tr>
<td>SD</td>
<td>Service Definition</td>
</tr>
</tbody>
</table>
Table 4.1: Insulin Delivery Service Test Case Naming Convention

4.1.2 Conformance

When conformance is claimed, all capabilities indicated as mandatory for this Specification shall be supported in the specified manner (process-mandatory). This also applies for all optional and conditional capabilities for which support is indicated. All mandatory capabilities, and optional and conditional capabilities for which support is indicated, are subject to verification as part of the Bluetooth Qualification Program.

The Bluetooth Qualification Program may employ tests to verify implementation robustness. The level of implementation robustness that is verified varies from one Specification to another and may be revised for cause based on interoperability issues found in the market.

Such tests may verify:

- That claimed capabilities may be used in any order and any number of repetitions that is not excluded by the Specification, OR
- That capabilities enabled by the implementations are sustained over durations expected by the use case, OR
- That the implementation gracefully handles any quantity of data expected by the use case, OR
- That in cases where more than one valid interpretation of the Specification exist, the implementation complies with at least one interpretation and gracefully handles other interpretations OR
- That the implementation is immune to attempted security exploits.

A single execution of each of the required tests is required in order to constitute a pass verdict. However, it is noted that in order to provide a foundation for interoperability, it is necessary that a qualified implementation consistently and repeatedly pass any of the applicable tests.

In any case, where a member finds an issue with the Test Plan Generator, the Test Case as described in the Test Suite, or with the Test System utilized, the Member is required to notify the responsible party via an errata request such that the issue may be addressed.

4.1.3 Pass/Fail verdict conventions

Each test case has an Expected Outcome section, which outlines all the detailed pass criteria conditions that shall be met by the IUT to merit a Pass verdict.

The convention in this test suite is that, unless there is a specific set of fail conditions outlined in the test case, the IUT fails the test case as soon one of the pass criteria conditions cannot be met. If this occurs the outcome of the test shall be the Fail Verdict.

4.2 Setup Preambles

The procedures defined in this section are provided for reference, in achieving the initial conditions in certain tests.

4.2.1 ATT Bearer on LE Transport

Preamble procedure:

1. Establish an LE transport connection between the IUT and the Lower Tester.
2. Establish an L2CAP channel 0x0004 between the IUT and the Lower Tester over that LE transport.
If the Lower Tester and IUT were not previously bonded, perform a pairing procedure. If the Lower Tester and IUT were previously bonded, re-enable encryption if not already enabled.

Authorization is granted on the IUT to allow access to the characteristics of the Insulin Delivery Service.

4.2.2 Control Point Configuration Preamble

Follow this preamble procedure to enable the IUT for use with desired `<Control Point Characteristic>` and `<Corresponding Mandatory Characteristic>`, as described in Table 4.2.

1. If a connection exists, it shall be disconnected.
2. Establish an ATT Bearer connection between the Lower Tester and IUT as described in Section 4.2.1.
3. The handles of the desired `<Control Point Characteristic>` and `<Corresponding Mandatory Characteristic>`, as required, have been previously discovered by the Lower Tester during the test procedure in Section 4.4 or are known to the Lower Tester by other means.
4. The handles of the Client Characteristic Configuration descriptor of the `<Control Point Characteristic>` and `<Corresponding Mandatory Characteristic>`, as required, have been previously discovered by the Lower Tester during the test procedure in Section 4.5 or are known to the Lower Tester by other means.
5. The desired `<Control Point Characteristic>` is configured for indication and `<Corresponding Mandatory Characteristic>`, as required, is configured for notification as described in Table 4.2.

<table>
<thead>
<tr>
<th>Control Point Characteristic</th>
<th>Corresponding Mandatory Characteristic</th>
<th>Corresponding Mandatory Characteristic configured for</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDD Status Reader Control Point</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>IDD Command Control Point</td>
<td>IDD Command Data</td>
<td>Notification (e.g. required for Read Basal Rate Profile Template Procedure, Read ISF Profile Template Procedure, Read I2CHO Ratio Profile Template Procedure, Read Target Glucose Range Profile Template Procedure, and Get Template Status and Details Procedure)</td>
</tr>
<tr>
<td>IDD Record Access Control Point</td>
<td>IDD History Data</td>
<td>Notification (e.g. required for All IDD RACP procedures)</td>
</tr>
</tbody>
</table>

Table 4.2: Configuration Preamble for IDD Status Reader CP, Command CP, and RACP

4.3 Service Definition

Verify the service definition.
4.3.1 IDS/SEN/SD/BV-01-C [Service definition over LE]

• Test Purpose
 Verify the IUT has one instantiation of the Insulin Delivery Service either as primary or secondary service.

• Reference
 [3] 2

• Initial Condition
 Establish an ATT Bearer connection between the Lower Tester and IUT as described in Section 4.2.1.

• Test Procedure
 1. The Lower Tester sends an ATT_Find_By_Type_Value_Request (0x0001, 0xFFFF) to the IUT, with type set to «Primary Service» and Value set to «Insulin Delivery Service». Verify one attribute handle range is returned, containing the starting handle and the ending handle of the «Insulin Delivery Service» definition.

 Or,

 2. If no instances of Insulin Delivery Service as a primary service are found, the Lower Tester sends an ATT_Find_By_Type_Value_Request (0x0001, 0xFFFF) to the IUT, with type set to «Secondary Service» and Value set to the UUID for «Insulin Delivery Service». Verify one attribute handle range is returned, containing the starting handle and the ending handle of the «Insulin Delivery Service» definition.

• Expected Outcome
 Pass verdict
 One attribute handle range is returned either as a primary service or a secondary service containing the starting handle and the ending handle of the «Insulin Delivery Service» definition.
Figure 4.1: Insulin Delivery Service Discovery

4.4 Characteristic Declaration

- **Test Purpose**

 This test group contains test cases to verify that the characteristic property field of the characteristic declaration meets the requirements of the service. The verification is done one property at a time, as enumerated in the test cases in Table 4.3 below, using this generic test procedure.

- **Reference**

 [3]

- **Initial Condition**

 The handle range of the service has been previously discovered by the Lower Tester in test case IDS/SEN/SD/BV-01-C [Service definition over LE] or is known to the Lower Tester by other means.

 Establish an ATT Bearer connection between the Lower Tester and IUT as described in Section 4.2.1.

- **Test Procedure**

 The following test procedure applies to the test cases listed in the Table 4.3 below:

 1. Discover all characteristics of the service by executing the test procedure of GATT test case GATT/SR/GAD/BV-04-C in [6].
 2. For a discovered characteristic that is listed in the table below, verify the characteristic properties field of the characteristic declaration meets the requirements of the service.

- **Expected Outcome**

 The following pass verdicts apply to the test cases listed in Table 4.3.
Pass verdict

Each characteristic is discovered, and the corresponding characteristic properties field of the characteristic declaration meets the requirements of the service.

<table>
<thead>
<tr>
<th>Test Case ID</th>
<th>Characteristic Properties Value (Requirements)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.1</td>
<td>IDS/SEN/DEC/BV-01-C [Characteristic Declaration – 'IDD Status Changed'] 0x22 (see [7])</td>
</tr>
<tr>
<td>4.4.2</td>
<td>IDS/SEN/DEC/BV-02-C [Characteristic Declaration – 'IDD Status'] 0x22 (see [7])</td>
</tr>
<tr>
<td>4.4.3</td>
<td>IDS/SEN/DEC/BV-03-C [Characteristic Declaration – 'IDD Annunciation Status'] 0x22 (see [7])</td>
</tr>
<tr>
<td>4.4.4</td>
<td>IDS/SEN/DEC/BV-04-C [Characteristic Declaration – 'IDD Features'] 0x02 (see [7])</td>
</tr>
<tr>
<td>4.4.5</td>
<td>IDS/SEN/DEC/BV-05-C [Characteristic Declaration – 'IDD Status Reader Control Point'] 0x28 (see [7])</td>
</tr>
<tr>
<td>4.4.6</td>
<td>IDS/SEN/DEC/BV-06-C [Characteristic Declaration – 'IDD Command Control Point'] 0x28 (see [7])</td>
</tr>
<tr>
<td>4.4.7</td>
<td>IDS/SEN/DEC/BV-07-C [Characteristic Declaration – 'IDD Command Data'] 0x10 (see [7])</td>
</tr>
<tr>
<td>4.4.8</td>
<td>IDS/SEN/DEC/BV-08-C [Characteristic Declaration – 'IDD Record Access Control Point'] 0x28 (see [7])</td>
</tr>
<tr>
<td>4.4.9</td>
<td>IDS/SEN/DEC/BV-09-C [Characteristic Declaration – 'IDD History Data'] 0x10 (see [7])</td>
</tr>
</tbody>
</table>

Table 4.3: Characteristic Declaration Test Cases

4.5 Characteristic Descriptors

- Test Purpose

This test group contains test cases to verify that the characteristic descriptors meet the requirements of the service. The verification is done one descriptor at a time, as enumerated in the test cases in Table 4.4 below, using this generic test procedure.

- Reference

[3] 3

- Initial Condition
The handle range of each characteristic referenced in the test cases below has been previously discovered by the Lower Tester during the test procedure in Section 4.4 or is known to the Lower Tester by other means.

Establish an ATT Bearer connection between the Lower Tester and IUT as described in Section 4.2.1.

• Test Procedure

The following test procedure applies to the test cases listed in Table 4.4. For each characteristic referenced in a test case below:

1. Discover all characteristic descriptors of the characteristic by executing the test procedure of GATT test case GATT/SR/GAD/BV-06-C in [6] using the handle range of the characteristic. The IUT returns one or more handle-UUID pairs.
2. If the UUID in a handle-UUID pair is for a characteristic descriptor referenced in a test case below, read the characteristic descriptor by executing the test procedure of GATT test case GATT/SR/GAR/BV-06-C in [6].
3. Verify the value of the characteristic descriptor meets the requirements of the service.

• Expected Outcome

The following pass verdicts apply to the test cases listed in Table 4.4.

Pass verdict

The characteristic descriptor is discovered, the characteristic descriptor is read, and the value of the characteristic descriptor meets the requirements of the service.

<table>
<thead>
<tr>
<th>Test Case ID</th>
<th>Value (Requirements)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.1 IDS/SEN/DES/BV-01-C [IDD Status Changed – ‘Client Characteristic Configuration Descriptor’]</td>
<td>0x0000 or 0x0002 (3 in [3])</td>
</tr>
<tr>
<td>4.5.2 IDS/SEN/DES/BV-02-C [IDD Status – ‘Client Characteristic Configuration Descriptor’]</td>
<td>0x0000 or 0x0002 (3 in [3])</td>
</tr>
<tr>
<td>4.5.3 IDS/SEN/DES/BV-03-C [IDD Annunciation Status – ‘Client Characteristic Configuration Descriptor’]</td>
<td>0x0000 or 0x0002 (3 in [3])</td>
</tr>
<tr>
<td>4.5.4 IDS/SEN/DES/BV-04-C [IDD Status Reader Control Point – ‘Client Characteristic Configuration Descriptor’]</td>
<td>0x0000 or 0x0002 (3 in [3])</td>
</tr>
<tr>
<td>4.5.5 IDS/SEN/DES/BV-05-C [IDD Command Control Point – ‘Client Characteristic Configuration Descriptor’]</td>
<td>0x0000 or 0x0002 (3 in [3])</td>
</tr>
<tr>
<td>4.5.6 IDS/SEN/DES/BV-06-C [IDD Command Data – ‘Client Characteristic Configuration Descriptor’]</td>
<td>0x0000 or 0x0001 (3 in [3])</td>
</tr>
<tr>
<td>4.5.7 IDS/SEN/DES/BV-07-C [IDD Record Access Control Point – ‘Client Characteristic Configuration Descriptor’]</td>
<td>0x0000 or 0x0002 (3 in [3])</td>
</tr>
<tr>
<td>Test Case ID</td>
<td>Value (Requirements)</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>4.5.8 IDS/SEN/DES/BV-08-C [IDD History Data – ‘Client Characteristic Configuration Descriptor’]</td>
<td>0x0000 or 0x0001 (3 in [3])</td>
</tr>
</tbody>
</table>

Table 4.4: Characteristic Descriptor Test Cases

4.6 Configure Indication and Notification

Test Purpose

This test group contains test cases to verify compliant operation in response to enable and disable characteristic indication or notification. The verification is done one value at a time, as enumerated in the test cases in Table 4.5 below, using this generic test procedure.

Reference

[3] 3

Initial Condition

The handle of the Client Characteristic Configuration descriptor of each characteristic referenced in the test cases below has been previously discovered by the Lower Tester during the test procedure in Section 4.5 or is known to the Lower Tester by other means.

Establish an ATT Bearer connection between the Lower Tester and IUT as described in Section 4.2.1.

Test Procedure

The following test procedure applies to the test cases listed in the Table 4.5 below:

1. Lower Tester performs an `ATT_Write_Request` to disable indication or notification by writing value 0x0000 to the Client Characteristic Configuration descriptor of the characteristic.
2. The Lower Tester reads the value of the Client Characteristic Configuration descriptor.
3. For each test case, the Lower Tester writes the value noted in Table 4.5 to the Client Characteristic Configuration descriptor of the characteristic.
4. The Lower Tester reads the value of the Client Characteristic Configuration descriptor.

Expected Outcome

The following pass verdicts apply to the test cases listed in Table 4.5:

Pass verdict

The characteristic descriptor is successfully written, and the value returned when read is consistent with the value written.

<table>
<thead>
<tr>
<th>Test Case ID</th>
<th>Value (Requirements)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6.1 IDS/SEN/CON/BV-01-C [Configure Indication – ‘IDD Status Changed’]</td>
<td>0x0002 (Section 3, 3.2 in [3])</td>
</tr>
</tbody>
</table>
Test Case ID

<table>
<thead>
<tr>
<th>Test Case ID</th>
<th>Value (Requirements)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6.2 IDS/SEN/CON/BV-02-C [Configure Indication – ‘IDD Status’]</td>
<td>0x0002 (Section 3, 3.3 in [3])</td>
</tr>
<tr>
<td>4.6.3 IDS/SEN/CON/BV-03-C [Configure Indication – ‘IDD Annunciation Status’]</td>
<td>0x0002 (Section 3, 3.4 in [3])</td>
</tr>
<tr>
<td>4.6.4 IDS/SEN/CON/BV-04-C [Configure Indication – ‘IDD Status Reader Control Point’]</td>
<td>0x0002 (Section 3, 3.6 in [3])</td>
</tr>
<tr>
<td>4.6.5 IDS/SEN/CON/BV-05-C [Configure Indication – ‘IDD Command Control Point’]</td>
<td>0x0002 (Section 3, 3.7 in [3])</td>
</tr>
<tr>
<td>4.6.6 IDS/SEN/CON/BV-06-C [Configure Notification – ‘IDD Command Data’]</td>
<td>0x0001 (Section 3, 3.8 in [3])</td>
</tr>
<tr>
<td>4.6.7 IDS/SEN/CON/BV-07-C [Configure Indication – ‘IDD Record Access Control Point’]</td>
<td>0x0002 (Section 3, 3.9 in [3])</td>
</tr>
<tr>
<td>4.6.8 IDS/SEN/CON/BV-08-C [Configure Notification – ‘IDD History Data’]</td>
<td>0x0001 (Section 3, 3.10 in [3])</td>
</tr>
</tbody>
</table>

Table 4.5: Configure Indication and Notification Test Cases

4.7 Characteristic Read

This test group contains test cases to read and verify that the characteristic values required by the service are compliant.

4.7.1 IDD Status Changed, IDD Status, IDD Annunciation Status and IDD Features Characteristic Read

- **Test Purpose**

 For each test case in Table 4.6, read and verify that the values required by the service are compliant.

- **Reference**

 [3] 3

- **Initial Condition**

 If E2E-Protection is enabled, verify that any existing connection is disconnected.

 Establish an ATT Bearer connection between the Lower Tester and IUT as described in Section 4.2.1.

 The handle of the <Characteristic> value referenced in each test case in Table 4.6 below has been previously discovered by the Lower Tester during the test procedure in Section 4.4 or is known to the Lower Tester by other means.

- **Test Procedure**
1. For each test case in Table 4.6, the Lower Tester issues an \textit{ATT_Read_Request} to read the \texttt{<Characteristic>} value by specifying the Characteristic Value Handle.

2. The IUT sends and \textit{ATT_Read_Response} to the Lower Tester.

3. Verify that the \texttt{<Characteristic>} value meets the requirements of the service.

• Expected Outcome

\textbf{Pass verdict}

For each test case in Table 4.6, the characteristic is successfully read, and the characteristic value meets the requirements of the service.

If the IUT has E2E-Protection enabled, then appropriate values for the E2E-Counter field and E2E-CRC field are present in the IDD Status Changed, IDD Status, IDD Annunciation Status, and IDD Features characteristics.

If the IUT does not have E2E-Protection enabled, then the E2E-Counter field and E2E-CRC field are excluded in the IDD Status Changed, IDD Status, and IDD Annunciation Status characteristics.

If the IUT does not have E2E-Protection enabled, then the E2E-CRC field is set to 0xFFFF and the E2E-Counter is set to 0 in the IDD Features characteristic.

The RFU bits in Flags field are set to 0.

<table>
<thead>
<tr>
<th>Test Case ID</th>
<th>Reference</th>
<th>Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7.1.1 IDS/SEN/CR/BV-01-C [Characteristic Read – ‘IDD Status Changed’]</td>
<td>[3] 3.2,4.1</td>
<td>IDD Status Changed characteristics</td>
</tr>
<tr>
<td>4.7.1.2 IDS/SEN/CR/BV-02-C [Characteristic Read – ‘IDD Status’]</td>
<td>[3] 3.3, 4.2</td>
<td>IDD Status characteristic</td>
</tr>
<tr>
<td>4.7.1.3 IDS/SEN/CR/BV-03-C [Characteristic Read – ‘IDD Annunciation Status’]</td>
<td>[3] 3.4, 4.3</td>
<td>IDD Annunciation Status characteristic</td>
</tr>
</tbody>
</table>

\textbf{Table 4.6: Test Cases for IDD Characteristics Read}

\textbf{4.7.2 IDS/SEN/CR/BV-05-C [Verify E2E-CRC and E2E-Counter calculations – IDD Status Reader CP]}

• Test Purpose

Verify the calculated E2E-CRC and E2E-Counter values when the IUT executes an IDD Status Reader Control Point procedure.

• Reference

[3] 1.8, 3.1, 3.2.1.2, and 3.6.2

• Initial Condition

The IUT and the Lower Tester have E2E-Protection enabled.
Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Status Reader Control Point characteristic.

• Test Procedure
 1. The Lower Tester executes the procedure included in IDS/SEN/RCP/BV-01-C [Reset Status Procedure] to reset the IDD Status Changed characteristic Flags field bits.
 2. Verify that the IDD Status Reader Control Point characteristic indication contains an E2E-CRC field and E2E-Counter field and the calculated CRC and Counter values meet the requirement of the service.
 3. Repeat step 1 and 2 until the maximum value for the E2E-Counter is reached and a rollover occurs.

• Expected Outcome

 Pass verdict

 At the beginning of each connection, the IUT transmit E2E-Counter field starts with a value of 1 and it is incremented by 1.

 When the transmit E2E-Counter field reaches its upper limit, the E2E-Counter rollovers to 1.

 The calculated E2E-Counter field and E2E-CRC field meet the requirement of the service.

4.7.3 IDS/SEN/CR/BV-06-C [Verify E2E-CRC and E2E-Counter calculations – Multiple Control Points]

• Test Purpose

 Verify the calculated E2E-CRC and E2E-Counter values when the IUT executes multiple control point procedures.

• Reference

 [3] 1.8, 3.1, 3.2.1.2, 3.6.2, 3.7.2, and 3.9.4

• Initial Condition

 The IUT and the Lower Tester have E2E-Protection enabled.

 For each supported control point, perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Status Reader Control Point, IDD Command Control Point, or IDD Record Access Control Point characteristics.

• Test Procedure

 1. The Lower Tester executes at least twice the procedure included in IDS/SEN/RCP/BV-01-C [Reset Status Procedure] to reset the IDD Status Changed characteristic Flags field bits.
 2. Verify that the IDD Status Reader Control Point characteristic indications contain an E2E-CRC field and E2E-Counter field and the calculated CRC and Counter values meet the requirement of the service.
 3. The Lower Tester executes a supported IDD Record Access Control Point or a supported IDD Command Control Point procedure.
4. Verify that both, IDD Status Reader Control Point characteristic and the other control point, indications contain an E2E-CRC field and E2E-Counter field and the calculated CRC and Counter values meet the requirement of the service.

• Expected Outcome

Pass verdict

At the beginning of each connection, the IUT transmit E2E-Counter field starts with a value of 1 and it is incremented by 1 for each control point.

For each control point, the IUT uses a control point specific transmit E2E-Counter and receive E2E-Counter.

The calculated E2E-CRC field and E2E-Counter field values meet the requirement of the service.

4.8 IDD Status Reader Control Point Procedures

This test group contains test cases to verify the IUT ability to perform compliant operation and interpret values of the IDD Status Reader Control Point characteristic or the handling of errors specific to the procedure or control point.

Table 3.9 in [3] defines the Op Codes and Operand values used in the IDD Status Reader Control Point procedure test cases in this section.

4.8.1 IDS/SEN/RCP/BV-01-C [Reset Status Procedure]

• Test Purpose

Verify that the IUT can perform the Reset Status procedure.

• Reference

[3] 3.6.2.1, 4.5.2.2

• Initial Condition

Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Status Reader Control Point characteristic.

Lower Tester configures the IDD Status Changed characteristic for indication by performing IDS/SEN/CON/BV-01-C [Configure Indication – ‘IDD Status Changed’].

The IUT has some of the bits in IDD Status Changed Flags field set to 1.

• Test Procedure

1. The Lower Tester sends an ATT_Read_Request to the IUT to read the IDD Status Changed characteristic to verify that some Flags field bits are set to a value 1.
2. The IUT replies with an ATT_Read_Response confirming that some of the IDD Status Changed characteristic Flags field bits are set to a value 1.
3. The Lower Tester writes the Reset Status Op Code (0x030C) to the IDD Status Reader Control Point with an Operand containing Flags field with a value indicating a reset of all IDD Status Changed characteristic Flags field bits.
4. The IUT sends an ATT_Handle_Value_Indication containing the IDD Status Changed characteristic with the updated Flags field values to the Lower Tester.
5. The IUT receives an *ATT_Handle_Value_Confirmation* from the Lower Tester.

6. The IUT sends an *ATT_Handle_Value_Indication* of the IDD Status Reader Control Point characteristic with the *Response Code Op Code* (0x303) and an Operand representing the *Request Op Code* (0x030C) followed by the *Response Code* for *Success* (0x0F).

7. The IUT receives an *ATT_Handle_Value_Confirmation* from the Lower Tester.

8. Verify that the characteristic value meets the requirements of the service.

• **Expected Outcome**

 Pass verdict

The IUT sends an *ATT_Handle_Value_Indication* containing the IDD Status Changed characteristic with the updated Flags field values to the Lower Tester.

The IUT sends an *ATT_Handle_Value_Indication* of the IDD Status Reader Control Point characteristic with the *Response Code Value Op Code* (0x0303) and an Operand representing the *Request Op Code* (0x030C) followed by the *Response Code* for *Success* (0x0F).

All bits in the IDD Status Changed characteristic Flags field are reset.

4.8.2 Get Active Bolus IDs Procedure

• **Test Purpose**

 Verify that the IUT can perform the *Get Active Bolus IDs* procedure.

• **Reference**

 [3] 3.6.2.2, 4.5.2.3, and 4.5.2.4

• **Initial Condition**

 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Status Reader Control Point characteristic.

 Perform an action on the IUT that will induce it to set a supported number of active boluses as listed in <# of Active Boluses> of Table 4.7.

• **Test Procedure**

 Based on the IUT supported number of active boluses, select the applicable test case from Table 4.7 and perform the following steps:

 1. The Lower Tester writes the *Get Active Bolus IDs Op Code* (0x0330) to the IDD Status Reader Control Point with no Operand.

 2. The IUT sends an *ATT_Handle_Value_Indication* of the IDD Status Reader Control Point characteristic with the *Get Active Bolus IDs Response Op Code* (0x033F) and an Operand Active Bolus IDs record with the Number of Active Boluses and Bolus IDs of the corresponding active boluses.

 3. The IUT receives an *ATT_Handle_Value_Confirmation* from the Lower Tester.

 4. Verify that the characteristic value meets the requirements of the service.

• **Expected Outcome**

 Pass verdict
For each test case in Table 4.7, the IUT determines and reports the number of active boluses and Bolus IDs.

The reported Bolus ID fields are set in chronological order by their start time of the delivery.

<table>
<thead>
<tr>
<th>Test Case ID</th>
<th># of Active Boluses</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8.2.1 IDS/SEN/RCP/BV-02-C [Get Active Bolus IDs Procedure – Single Bolus]</td>
<td>1</td>
</tr>
<tr>
<td>4.8.2.2 IDS/SEN/RCP/BV-03-C [Get Active Bolus IDs Procedure – Multiple Boluses]</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 4.7: Test Cases for Get Active Bolus IDs procedure

4.8.3 Get Active Bolus Delivery Procedure

Test Purpose

Verify that the IUT can perform the *Get Active Bolus Delivery procedure* with the Bolus Value Selections described in Table 4.8.

Reference

[3] 3.6.2.3, 4.5.2.5, and 4.5.2.6

Initial Condition

Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Status Reader Control Point characteristic.

The IUT has an active bolus ID and the Lower Tester acquires the bolus ID by performing IDS/SEN/RCP/BV-02-C [Get Active Bolus IDs Procedure – Single Bolus] procedure.

Test Procedure

For each test case in Table 4.8, using the IUT’s active Bolus ID, perform the following steps:

1. The Lower Tester writes the *Get Active Bolus Delivery* Op Code (0x0356) to the IDD Status Reader Control Point with an Operand containing the Bolus ID field and a <Bolus Value Selection> as described in Table 4.8.

2. The IUT sends an *ATT_Handle_Value_Indication* of the IDD Status Reader Control Point characteristic with the *Get Active Bolus Delivery Response* Op Code (0x0359) and an Operand Active Bolus Delivery record containing the details for the requested bolus.

3. The IUT receives an *ATT_Handle_Value_Confirmation* from the Lower Tester.

4. Verify that the characteristic value meets the requirements of the service.

Expected Outcome

Pass verdict

For each test case in Table 4.8, the IUT indicates the IDD Status Reader Control Point characteristic with the *Get Active Bolus Delivery Response* Op Code (0x0359) and an Operand Active Bolus Delivery record containing the details for the requested bolus.
4.8.4 IDS/SEN/RCP/BV-06-C [Get Active Basal Rate Delivery Procedure]

- **Test Purpose**

 Verify that the IUT can perform the *Get Active Basal Rate Delivery* procedure.

- **Reference**

 [3] 3.6.2.4, 4.5.2.7, and 4.5.2.8

- **Initial Condition**

 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired `<Control Point Characteristic>` set to IDD Status Reader Control Point characteristic.

- **Test Procedure**

 1. Perform an action on the IUT that will induce it to activate a programmed basal rate.
 2. The Lower Tester writes the *Get Active Basal Rate Delivery* Op Code (0x0365) to the IDD Status Reader Control Point with no Operand.
 3. The IUT sends an `ATT_Handle_Value_Indication` of the IDD Status Reader Control Point characteristic with the *Get Active Basal Rate Delivery Response* Op Code (0x036A) and an Operand Active Basal Rate Delivery record containing the programmed details for the requested basal rate.
 4. The IUT receives an `ATT_Handle_Value_Confirmation` from the Lower Tester.
 5. Verify that the characteristic value meets the requirements of the service.

- **Expected Outcome**

 Pass verdict

 The IUT indicates the IDD Status Reader Control Point characteristic with the *Get Active Basal Rate Delivery Response* Op Code (0x036A) and an Operand Active Basal Rate Delivery record containing the programmed details for the requested basal rate.

4.8.5 IDS/SEN/RCP/BV-07-C [Get Total Daily Insulin Status Procedure]

- **Test Purpose**

 Verify that the IUT can perform the *Get Total Daily Insulin Status* procedure.
• Reference

[3] 3.6.2.5, 4.5.2.9, and 4.5.2.10

• Initial Condition

Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Status Reader Control Point characteristic.

• Test Procedure

1. The Lower Tester writes the Get Total Daily Insulin Status Op Code (0x0395) to the IDD Status Reader Control Point with no Operand.
2. The IUT sends an ATT_Handle_Value_Indication of the IDD Status Reader Control Point characteristic with the Get Total Daily Insulin Status Response Op Code (0x039A) and the Operand Total Daily Insulin Status record containing the values of the Total Daily Insulin Sum of Bolus Delivered field, Total Daily Insulin Sum of Basal Delivered field and Total Daily Insulin Sum of Bolus and Basal Delivered field.
3. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.
4. Verify that the characteristic value meets the requirements of the service.

• Expected Outcome

Pass verdict

The IUT sends an indication of the IDD Status Reader Control Point characteristic with the Get Total Daily Insulin Status Response Op Code (0x039A) and the Operand Total Daily Insulin Status record.

If Boluses are not supported, the Total Daily Insulin Sum of Bolus Delivered is set to 0.

If Basal Rate is not supported, the Total Daily Insulin Sum of Basal Delivered is set to 0.

4.8.6 IDS/SEN/RCP/BV-08-C [Get Counter Procedure]

• Test Purpose

Verify that the IUT can perform the Get Counter Procedure with the Operand Counter Type and Counter Value Selection listed in Table 4.9. If the combination of the Counter Type and Counter Value Selection is supported the IUT reports a valid response. Where the Counter Type or Counter Value Selection is not supported the IUT reports a valid error response.

• Reference

[3] 3.6.2.6, 4.5.2.11, and 4.5.2.12

• Initial Condition

Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Status Reader Control Point characteristic.

• Test Procedure

1. For each <Counter Type> in Table 4.9, perform the following steps:
 a. For each <Counter Value Selection> in Table 4.9, perform the following steps:
i. The Lower Tester writes the Get Counter Op Code (0x03A6) to the IDD Status Reader Control Point using the listed Operand consisting of a <Counter Type> and <Counter Value Selection> as described in Table 4.9.

ii. IF the <Counter Type> is NOT supported OR the <Counter Value Selection> is NOT supported, the IUT sends an ATT_Handle_Value_Indication of the IDD Status Reader Control Point characteristic with Response Code Op Code (0x0303) and an Operand consisting of the Request Op Code (0x03A6) followed by the Response Code Value for Invalid operand (0x71).

iii. ELSE, the IUT sends an ATT_Handle_Value_Indication of the IDD Status Reader Control Point characteristic with the Get Counter Response Op Code (0x03A9) and an Operand containing a Counter record with the details of the counter type, counter value selection and requested value.

iv. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.

2. Verify that the characteristic value meets the requirements of the service.

 • Expected Outcome

 Pass verdict

 For each combination of <Counter Type> and <Counter Value Selection>, the IUT indicates the IDD Status Reader Control Point characteristic with:

 The Get Counter Response Op Code (0x03A9) and an Operand containing a Counter record with the details of the Counter Type, Counter Value Selection and Counter Value (Combination supported).

 OR

 The Response Code Op Code (0x0303) and an Operand consisting of the Request Op Code (0x03A6) followed by the Response Code Value for Invalid operand (0x71) (Combination not supported).

<table>
<thead>
<tr>
<th>Counter Type</th>
<th>Counter Value Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDD Lifetime (0x0F)</td>
<td>Remaining (0x0F) Elapsed (0x33)</td>
</tr>
<tr>
<td>IDD Warranty Time (0x33)</td>
<td>Remaining (0x0F) Elapsed (0x33)</td>
</tr>
<tr>
<td>IDD Loaner Time (0x3C)</td>
<td>Remaining (0x0F) Elapsed (0x33)</td>
</tr>
<tr>
<td>Reservoir Insulin Operation Time (0x55)</td>
<td>Remaining (0x0F) Elapsed (0x33)</td>
</tr>
</tbody>
</table>

Table 4.9: Counter Types and Counter Value Selections for Get Counter Procedure

4.8.7 Get Delivered Insulin and Insulin On Board Procedures

 • Test Purpose

 Verify that the IUT can perform each selected test case in Table 4.10.

 • Reference
• Initial Condition

Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Status Reader Control Point characteristic.

• Test Procedure.

For each selected test case in Table 4.10, perform the following steps:

1. The Lower Tester writes the <Opcode>, listed in Table 4.10, to the IDD Status Reader Control Point with no Operand.
2. The IUT sends an ATT_Handle_Value_Indication of the IDD Status Reader Control Point characteristic with the <Response Op Code> and <Operand> as described in Table 4.10.
3. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.
4. Verify that the characteristic value meets the requirements of the service.

• Expected Outcome

Pass verdict

For each selected test case in Table 4.10, the IUT indicates the IDD Status Reader Control Point characteristic with the <Response Op Code> and <Operand> as described in Table 4.10.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8.7.1 IDS/SEN/RCP/BV-09-C [Get Delivered Insulin Procedure]</td>
<td>3.6.2.7, 4.5.2.13, 4.5.2.14</td>
<td>Get Delivered Insulin (0x03C0)</td>
<td>Get Delivered Insulin Response (0x03CF)</td>
<td>Delivered Insulin record: • Bolus Amount Delivered • Basal Amount Delivered</td>
</tr>
<tr>
<td>4.8.7.2 IDS/SEN/RCP/BV-10-C [Get Insulin On Board Procedure]</td>
<td>3.6.2.8, 4.5.2.15, 4.5.2.16</td>
<td>Get Insulin On Board (0x03F3)</td>
<td>Get Insulin On Board Response (0x03FC)</td>
<td>Insulin On Board record: • Flags • Insulin On Board • Remaining Duration</td>
</tr>
</tbody>
</table>

Table 4.10: Test Cases for Get Delivered Insulin and Insulin On Board procedures
4.8.8 IDD Status Reader Control Point – Error Handling

This test group contains test cases to verify compliant operation of the IUT when the IDD Status Reader Control Point is written with an invalid operand or IUT does not support the procedure or other errors specific to the procedure or control point.

4.8.8.1 IDS/SEN/RCPE/BI-01-C [Get Active Bolus Delivery Procedure – Procedure not applicable]

- Test Purpose
 Verify that the IUT does not perform the Get Active Bolus Delivery procedure with a Bolus ID of a bolus which is not an active bolus or a Bolus ID of a bolus which does not exist.

- Reference
 [3] 3.6.2.3, 4.5.2.1, and 4.5.2.5

- Initial Condition
 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Status Reader Control Point characteristic.

 The Lower Tester determines an inactive bolus or a bolus that does not exist by performing the Get Active Bolus Delivery procedure and selecting a Bolus ID outside the listed boluses.

- Test Procedure
 Select one of the Test Patterns in Table 4.11 and perform the following steps once:

 1. The Lower Tester writes the Get Active Bolus Delivery Op Code (0x0356) to the IDD Status Reader Control Point with an Operand containing a Bolus ID and a Bolus Value Selection as described in Table 4.11.

 2. The IUT sends an ATT_Handle_Value_Indication of the IDD Status Reader Control Point characteristic with the Response Code Op Code (0x0303) an Operand consisting of the Request Op Code (0x0356) followed by the Response Code Value for Procedure not applicable (0x74).

 3. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.

 4. Verify that the characteristic value meets the requirements of the service.

- Expected Outcome
 Pass verdict

 The IUT indicates the IDD Status Reader Control Point characteristic with the Response Code Op Code (0x0303) an Operand consisting of the Request Op Code (0x0356) followed by the Response Code Value for Procedure not applicable (0x74).

<table>
<thead>
<tr>
<th>Test Pattern</th>
<th>Bolus ID</th>
<th>Bolus Value Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bolus ID of a bolus which is not an active bolus</td>
<td>A valid Bolus Value Selection</td>
</tr>
<tr>
<td>2</td>
<td>Bolus ID of a bolus which does not exist</td>
<td>A valid Bolus Value Selection</td>
</tr>
</tbody>
</table>

Table 4.11: Test Patterns for Get Active Bolus Delivery procedure - Procedure not applicable
4.8.8.2 IDS/SEN/RCPE/BI-02-C [Get Active Bolus Delivery Procedure – Invalid Operand]

- Test Purpose
 Verify that the IUT does not perform the *Get Active Bolus Delivery* procedure with a Bolus Value Selection set to an RFU value.

- Reference
 [3] 3.6.2.3, 4.5.2.1, and 4.5.2.5

- Initial Condition
 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Status Reader Control Point characteristic.

 The IUT has an active bolus ID and the Lower Tester acquires the bolus ID by performing the *Get Active Bolus Delivery* procedure.

- Test Procedure
 1. The Lower Tester writes the *Get Active Bolus Delivery* Op Code (0x0356) to the IDD Status Reader Control Point with an Operand containing a Bolus ID and a Bolus Value Selection set to an RFU value.
 2. The IUT sends an *ATT_Handle_Value_Indication* of the IDD Status Reader Control Point characteristic with the *Response Code* Op Code (0x0303) an Operand consisting of the *Request Op Code* (0x0356) followed by the *Response Code Value for Invalid Operand* (0x71).
 3. The IUT receives an *ATT_Handle_Value_Confirmation* from the Lower Tester.
 4. Verify that the characteristic value meets the requirements of the service.

- Expected Outcome
 Pass verdict

 The IUT indicates the IDD Status Reader Control Point characteristic with the *Response Code* Op Code (0x0303) an Operand consisting of the *Request Op Code* (0x0356) followed by the *Response Code Value for Invalid Operand* (0x71).

4.8.8.3 IDS/SEN/RCPE/BI-03-C [Get Active Basal Rate Delivery Procedure – Procedure not applicable]

- Test Purpose
 Verify that the IUT does not perform the *Get Active Basal Rate Delivery* procedure when there are no active basal rate profiles present.

- Reference
 [3] 3.6.2.4, 4.5.2.1, and 4.5.2.7

- Initial Condition
 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Status Reader Control Point characteristic.
The IUT Number of Active Profile Templates is 0.

- **Test Procedure**
 1. The Lower Tester writes the *Get Active Basal Rate Delivery* Op Code (0x0365) to the IDD Status Reader Control Point with no Operand.
 2. The IUT sends an *ATT_Handle_Value_Indication* of the IDD Status Reader Control Point characteristic with the *Response Code* Op Code (0x0303) an Operand consisting of the *Request Op Code* (0x0365) followed by the *Response Code Value for Procedure not applicable* (0x74).
 3. The IUT receives an *ATT_Handle_Value_Confirmation* from the Lower Tester.
 4. Verify that the characteristic value meets the requirements of the service.

- **Expected Outcome**

 Pass verdict

 The IUT indicates the IDD Status Reader Control Point characteristic with the *Response Code* Op Code (0x0303) an Operand consisting of the *Request Op Code* (0x0365) followed by the *Response Code Value for Procedure not applicable* (0x74).

4.8.8.4 IDS/SEN/RCPE/BI-04-C [Get Counter Procedure – Invalid Operand]

- **Test Purpose**

 Verify that the IUT does not perform the *Get Counter* procedure with the Operand Counter Type or Counter Value Selection set to an RFU value.

- **Reference**

 [3] 3.6.2.6, 4.5.2.1, and 4.5.2.11

- **Initial Condition**

 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Status Reader Control Point characteristic.

- **Test Procedure**

 1. The Lower Tester writes the *Get Counter* Op Code (0x03A6) to the IDD Status Reader Control Point with an Operand containing a Counter Type and Counter Value Selection of which at least one is set to an RFU value.
 2. The IUT sends an *ATT_Handle_Value_Indication* of the IDD Status Reader Control Point characteristic with *Response Code* Op Code (0x0303) and an Operand consisting of the *Request Op Code* (0x03A6) followed by the *Response Code Value for Invalid operand* (0x71).
 3. The IUT receives an *ATT_Handle_Value_Confirmation* from the Lower Tester.
 4. Verify that the characteristic value meets the requirements of the service.

- **Expected Outcome**

 Pass verdict

 The IUT indicates the IDD Status Reader Control Point characteristic with *Response Code* Op Code (0x0303) and an Operand consisting of the *Request Op Code* (0x03A6) followed by the *Response Code Value for Invalid operand* (0x71).
4.8.8.5 IDS/SEN/RCPE/BI-05-C [Status Reader CP – Op code not supported]

- Test Purpose
 Verify that the IUT responds appropriately when a Client writes an unsupported Op Code to the IDD Status Reader Control Point.

- Reference
 [3] 3.11.4, 4.5.2.1

- Initial Condition
 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Status Reader Control Point characteristic.

- Test Procedure
 1. The Lower Tester writes an Op Code with a value from the RFU range (e.g. 0x0505 – 0x0F3C) to the IDD Status Reader Control Point with no Operand.
 2. The IUT sends an ATT_Handle_Value_Indication of the IDD Status Reader Control Point characteristic with the Response Code Op Code (0x0303) and an Operand consisting of the Request Op Code (selected value from Step 1) followed by the Response Code Value for Op Code not supported (0x70).
 3. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.
 4. Verify that the characteristic value meets the requirements of the service.

- Expected Outcome
 Pass verdict

 The IUT indicates the IDD Status Reader Control Point characteristic with the Response Code Op Code (0x0303) and an Operand consisting of the Request Op Code (selected value from Step 1) followed by the Response Code Value for Op Code not supported (0x70).

4.9 IDD Command Control Point Procedures

This test group contains test cases to verify the IUT ability to perform compliant operation and interpret values of the IDD Command Control Point and IDD Command Data characteristics.

Table 3.10 in [3] defines the Op Codes, Operators and Operand values used in the IDD Command Control Point procedure test cases in this section.

4.9.1 IDS/SEN/CCP/BV-01-C [Set Therapy Control State Procedure]

- Test Purpose
 Verify that the IUT can perform the Set Therapy Control State procedure.

- Reference
 [3] 3.7.2.2, 4.6.2.1 and 4.6.2.2

- Initial Condition
 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point characteristic.
Lower Tester configures the IDD Status characteristic for indication by performing **IDS/SEN/CON/BV-02-C [Configure Indication – ‘IDD Status’]**.

The IUT is in a therapy state which allows the IUT to change to a *Run* Therapy Control State.

Test Procedure

1. The Lower Tester writes the *Set Therapy Control State* Op Code (0x0F5A) to the IDD Command Control Point with an Operand containing a Therapy Control State field set to *Run*.
2. The IUT sends an *ATT_Handle_Value_Indication* containing the IDD Status characteristic handle and value to the Lower Tester.
3. The IUT receives an *ATT_Handle_Value_Confirmation* from the Lower Tester.
4. The IUT sends an *ATT_Handle_Value_Indication* of the IDD Command Control Point characteristic with the *Response Code* Op Code (0x0F55) and an Operand representing the *Request Op Code* (0x0F5A) followed by the *Response Code Value for Success* (0x0F).
5. The IUT receives an *ATT_Handle_Value_Confirmation* from the Lower Tester.
6. Verify that the characteristic value meets the requirements of the service.

Expected Outcome

Pass verdict

The IUT sends an *ATT_Handle_Value_Indication* containing the IDD Status characteristic handle and value to the Lower Tester.

The IUT sets the Therapy Control State as provided by the Operand with the Therapy Control State field set to *Run* (0x55).

The IUT sends an indication of the IDD Command Control Point characteristic with the *Response Code* Op Code (0x0F55) and an Operand representing the *Request Op Code* (0x0F5A) followed by the *Response Code Value for Success* (0x0F).

4.9.2 IDS/SEN/CCP/BV-02-C [Set Flight Mode Procedure]

Test Purpose

Verify that the IUT can perform the *Set Flight Mode Procedure*.

Reference

[3] 3.7.2.3, 4.6.2.1

Initial Condition

Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point characteristic.

Test Procedure

1. The Lower Tester writes the *Set Flight Mode* Op Code (0x0F66) to the IDD Command Control Point with no Operand.
2. The IUT sends an *ATT_Handle_Value_Indication* of the IDD Command Control Point characteristic with the *Response Code* Op Code (0x0F55) and an Operand representing the *Request Op Code* (0x0F66) followed by the *Response Code Value for Success* (0x0F).
3. The IUT receives an *ATT_Handle_Value_Confirmation* from the Lower Tester.
4. Verify that the characteristic value meets the requirements of the service.

• Expected Outcome

Pass verdict

The IUT confirms the receipt of the _Set Flight Mode_ command before activating the flight mode.

The IUT sends an indication of the IDD Command Control Point characteristic with the _Response Code Op Code_ (0x0F55) and an Operand representing the _Request Op Code_ (0x0F66) followed by the _Response Code Value for Success_ (0x0F).

4.9.3 IDS/SEN/CCP/BV-03-C [Snooze Annunciation Procedure]

• Test Purpose

Verify that the IUT can perform the _Snooze Annunciation_ procedure.

• Reference

[3] 3.7.2.4, 4.6.2.4, and 4.6.2.5

• Initial Condition

Lower Tester configures the IDD Annunciation Status characteristic for indication by performing IDS/SEN/CON/BV-03-C [Configure Indication – ‘IDD Annunciation Status’].

The IUT has an annunciation and the Lower Tester knows the Annunciation Instance ID.

The Lower Tester re-sets the Annunciation Status Changed bit in the IDD Status Changed characteristic.

Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point characteristic.

• Test Procedure

1. The Lower Tester writes the _Snooze Annunciation_ Op Code (0x0F69) to the IDD Command Control Point with an Operand containing the Annunciation Instance ID indicating the annunciation to snooze.
2. The IUT sends an _ATT_Handle_Value_ _Indication_ of the IDD Annunciation Status characteristic with a value _Snoozed_ in the Annunciation Status field.
3. The IUT receives an _ATT_Handle_Value_Confirmation_ from the Lower Tester.
4. The IUT sends an _ATT_Handle_Value_ _Indication_ of the IDD Command Control Point characteristic with the _Snooze Annunciation Response_ Op Code (0x0F96) and an Operand containing the Annunciation Instance ID of the snoozed annunciation.
5. The IUT receives an _ATT_Handle_Value_Confirmation_ from the Lower Tester.
6. The Lower Tester sends an _ATT_Read_Request_ to the IUT with the attribute handle set to the handle of the IDD Status Changed characteristic.
7. The IUT replies with an _ATT_Read_Response_ which contains the value of the attribute that has been read confirming that the IDD Status Changed characteristic Flags field bit for the Annunciation Status Changed bit is set to _True_.
8. Once the snoozing time is over, the IUT sends an _ATT_Handle_Value_ _Indication_ of the IDD Annunciation Status characteristic with a value _Pending_ in the Annunciation Status field.
9. The IUT receives an _ATT_Handle_Value_Confirmation_ from the Lower Tester.
10. Verify that the characteristic value meets the requirements of the service.

- **Expected Outcome**

 Pass verdict

The IUT sets the Annunciation Status field of the IDD Annunciation Status characteristic to value *Snoozed* (0x3C) for the annunciation denoted by the Annunciation Instance ID field.

In step 7, the IUT confirms that the Annunciation Status Changed bit of the Flags field of the IDD Status Changed characteristic is set to *True*.

Once the snoozing time is over, in step 8, the IUT sends an *ATT_Handle_Value_Indication* of the IDD Annunciation Status characteristic with a value *Pending* in the Annunciation Status field.

4.9.4 Confirm Annunciation Procedure

- **Test Purpose**

 Verify that the IUT can perform the *Confirm Annunciation* procedure with an Annunciation Instance ID with the <Annunciation Status Value> as described in Table 4.12.

- **Reference**

 [3] 3.7.2.5, 4.6.2.6, and 4.6.2.7

- **Initial Condition**

 The IUT has an active annunciation and the Lower Tester knows the Annunciation Instance ID with the <Annunciation Status Value> as described in Table 4.12.

 The Lower Tester re-sets the Annunciation Status Changed bit in the IDD Status Changed characteristic.

 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point characteristic.

- **Test Procedure**

 For each selected test case in Table 4.12, perform the following steps:

 1. The Lower Tester writes the *Confirm Annunciation* Op Code (0x0F99) to the IDD Command Control Point with an Operand containing an Annunciation Instance ID, with the <Annunciation Status Value> as described in Table 4.12, indicating the annunciation to be confirmed.
 2. The IUT sends an *ATT_Handle_Value_Indication* of the IDD Command Control Point characteristic with the *Confirm Annunciation Response* (0x0FA5) and an Operand containing the Annunciation Instance ID of the confirmed annunciation.
 3. The IUT receives an *ATT_Handle_Value_Confirmation* from the Lower Tester.
 4. The Lower Tester sends an *ATT_Read_Request* to the IUT with the attribute handle set to the handle of the IDD Status Changed characteristic.
 5. The IUT replies with an *ATT_Read_Response* which contains the value of the attribute that has been read confirming that the IDD Status Changed characteristic Flags field bit for the Annunciation Status Changed bit is set to *True*.
 6. The Lower Tester sends an *ATT_Read_Request* to the IUT with the attribute handle set to the handle of the IDD Annunciation Status characteristic.
7. The IUT replies with an ATT_Read_Response which contains the value of the attribute that has been read confirming that the Annunciation Present bit of Flag fields is set to False and IUT no longer provides information about the confirmed annunciation.

8. Verify that the characteristic value meets the requirements of the service.

- Expected Outcome

 Pass verdict

 For each selected test case in Table 4.12, the IUT sends an indication of the IDD Command Control Point characteristic with the Confirm Annunciation Response (0x0FA5) and an Operand containing the Annunciation Instance ID of the confirmed annunciation.

 The IUT sets the Annunciation Status Changed bit of the IDD Status Changed characteristic Flags field to True.

 The confirmed annunciation is no longer active and the IUT no longer provides information about the annunciation, Annunciation Present bit of Flag field is set to False.

<table>
<thead>
<tr>
<th>Test Case ID</th>
<th>Annunciation Status Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9.4.1</td>
<td>Snoozed</td>
</tr>
<tr>
<td>4.9.4.2</td>
<td>Pending</td>
</tr>
</tbody>
</table>

Table 4.12: Test Cases for Confirm Annunciation procedures

4.9.5 Read a Profile Template Procedure

- Test Purpose

 Verify that the IUT can perform the applicable Read Profile Template Procedure in Table 4.13.

- Reference

 [3] 3.7.2.1.1

- Initial Condition

 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point characteristic.

 For each supported profile template type, in Table 4.13, the IUT has a template with status set to configured and the Lower Tester acquires the template number by performing the IDS/SEN/CCP/BV-25-C [Get Template Status and Details Procedure].

- Test Procedure

 The following test procedure applies to the test cases listed in Table 4.13:
1. The Lower Tester writes the appropriate read <Profile Template Op Code> to the IDD Command Control Point with an Operand comprising the corresponding profile template number (see Table 4.13).

2. The IUT sends one or more ATT_Handle_Value_Notification of the IDD Command Data characteristic with the Response Code set to the appropriate <Profile Template Response Op Code> and an Operand containing the corresponding <Profile Template Record> (see Table 4.13) until all time blocks of the profile have been sent.

3. The IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Response Code Op Code (0x0F55) and an Operand consisting of the Request Op Code with value of <Profile Template Op Code> (see Table 4.13) followed by the Response Code Value for Success (0xF0).

4. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.

5. Verify that the characteristic values meet the requirements of the service.

• Expected Outcome

Pass verdict

The IUT sends one or more ATT_Handle_Value_Notification of the IDD Command Data characteristic until all time blocks of the profile template record have been sent to the Lower Tester.

The IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Response Code Value for Success (0xF0).

The value of the characteristic meets the requirements of the service.
<table>
<thead>
<tr>
<th>Test Case ID</th>
<th>Reference</th>
<th><Profile Template Op Code></th>
<th><Profile Template Response Op Code></th>
<th><Profile Template Record></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9.5.1 IDS/SEN/CCP/BV-06-C [Read Basal Rate Profile Template Procedure]</td>
<td>3.7.2.6, 4.6.2.8, 4.6.2.9</td>
<td>Read Basal Rate Profile Template (0x0FAA)</td>
<td>Read Basal Rate Profile Template Response (0x0FC3)</td>
<td>Basal Rate Profile Template Record</td>
</tr>
<tr>
<td>4.9.5.2 IDS/SEN/CCP/BV-07-C [Read ISF Profile Template Procedure]</td>
<td>3.7.2.25, 4.6.2.40, 4.6.2.41</td>
<td>Read ISF Profile Template (0x12B8)</td>
<td>Read ISF Profile Template Response (0x12D1)</td>
<td>ISF Profile Template Record</td>
</tr>
<tr>
<td>4.9.5.3 IDS/SEN/CCP/BV-08-C [Read I2CHO Ratio Profile Template Procedure]</td>
<td>3.7.2.27, 4.6.2.44, 4.6.2.45</td>
<td>Read I2CHO Ratio Profile Template (0x12ED)</td>
<td>Read I2CHO Ratio Profile Template Response (0x1414)</td>
<td>I2CHO Ratio Profile Template Record</td>
</tr>
<tr>
<td>4.9.5.4 IDS/SEN/CCP/BV-09-C [Read Target Glucose Range Profile Template Procedure]</td>
<td>3.7.2.29, 4.6.2.48, 4.6.2.49</td>
<td>Read Target Glucose Range Profile Template (0x1428)</td>
<td>Read Target Glucose Range Profile Template Response (0x1441)</td>
<td>Target Glucose Range Profile Template Record</td>
</tr>
</tbody>
</table>

Table 4.13: Test Cases for IDD Command CP Characteristic Read Profile Template Procedure

4.9.6 Write a Profile Template Procedure

- **Test Purpose**

 Verify that the IUT can perform the applicable Write Profile Template Procedure in Table 4.14.

- **Reference**

 [3] 3.7.2.1.2

- **Initial Condition**

 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point characteristic.

 For each supported profile template type, in Table 4.14, the IUT has a template with status set to configurable and the Lower Tester acquires the template number by performing the IDS/SEN/CCP/BV-25-C [Get Template Status and Details Procedure].

- **Test Procedure**

 The following test procedure applies to the test cases listed in in Table 4.14:

 1. The Lower Tester writes the appropriate <Profile Template Op Code> to the IDD Command Control Point with an Operand comprising the corresponding <Profile Template Record> (see Table 4.14) with the appropriate Flags field (Bit 0, End Transaction, set to False), a profile template number, first time block number index, duration(s) and, based on profile template, the...
rate(s) in IU/h or insulin sensitivity factors in mg/dL or insulin-to-carbohydrate ratios in grams or the lower and upper target glucose limits in mg/dL according to the IXIT [8].

2. For each received profile template record, the IUT performs a plausibility check. After a successful plausibility check, the IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Response Code set to the appropriate <Profile Template Response Op Code> (see Table 4.14) and an Operand containing the appropriate Flags Field (Bit 0, Transaction Completed, set to False), profile template number and first time block number index.

3. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.

4. Repeat steps 1 - 3 until the end of the transaction is reached.

5. End of Transaction: The Lower Tester writes the appropriate <Profile Template Op Code> to the IDD Command Control Point with an Operand comprising the corresponding <Profile Template Record> (see Table 4.14) with the appropriate Flag Field (Bit 0, End Transaction, set to True), profile template number and appropriate time block number index, duration(s) and rate(s).

6. For the received profile template record, the IUT performs an end of transaction plausibility check. After a successful end of transaction plausibility check the IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Response Code set to the appropriate <Profile Template Response Op Code> (see Table 4.14) and an Operand containing the Flags Field (Bit 0, Transaction Completed, set to True), profile template number and first time block number index.

7. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.

8. The Lower Tester verifies that the template is set to configured by performing the IDS/SEN/CCP/BV-25-C [Get Template Status and Details Procedure] procedure.

9. Verify that the characteristic values meet the requirements of the service.

• Expected Outcome

Pass verdict

After each received Profile Template record and successful plausibility check, the IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Response Code set to the <Profile Template Response Op Code> (see Table 4.14) and an Operand containing the appropriate Flags Field (Bit 0, Transaction Completed, set to False), profile template number and first time block number index.

The IUT receives all time blocks of the entire profile template within a transaction.

After a successful end of transaction plausibility check, the IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Response Code set to the appropriate <Profile Template Response Op Code> (see Table 4.14) and an Operand containing the Flags Field (Bit 0, Transaction Completed, set to True), profile template number and first time block number index.

Upon successfully completing the end of transaction plausibility check, the IUT sets the profile template to configured and template is stored.
Table 4.14: Test Cases for IDD Command CP Characteristic Write Profile Template Procedure

4.9.7 IDS/SEN/CCP/BV-14-C [Set TBR Adjustment Procedure – Without a TBR Template]

- Test Purpose
 Verify that the IUT can perform the Set TBR Adjustment procedure.

- Reference
 [3] 3.7.2.8, 4.6.2.1 and 4.6.2.12

- Initial Condition
 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point and IDD Status Reader Control Point characteristics.

 The Lower Tester knows the IUT’s supported TBR Type by performing IDS/SEN/CR/BV-04-C [Characteristic Read – ‘IDD Features’].

 The Lower Tester knows the details of the TBR record.

- Test Procedure
 1. The Lower Tester writes the Set TBR Adjustment Op Code (0x0FFF) to the IDD Command Control Point with an Operand comprising a TBR record.
2. The IUT sends an `ATT_Handle_Value_Indication` of the IDD Command Control Point characteristic with the `Response Code Op Code` (0x0F55) and an Operand consisting of `Request Op Code` (0x0FFF) followed by the `Response Code Value for Success` (0x0F).

3. The IUT receives an `ATT_Handle_Value_Confirmation` from the Lower Tester.

4. The Lower Tester verifies that the TBR is set according to the TBR adjustment procedure by performing IDS/SEN/RCP/BV-06-C [Get Active Basal Rate Delivery Procedure].

5. Verify that the characteristic values meet the requirements of the service.

- **Expected Outcome**

 Pass verdict

 The IUT sends an `ATT_Handle_Value_Indication` of the IDD Command Control Point characteristic with the `Response Code Op Code` (0x0F55) and an Operand consisting of `Request Op Code` (0x0FFF) followed by the `Response Code Value for Success` (0x0F).

 The IUT sends an `ATT_Handle_Value_Indication` of the IDD Status Reader Control Point characteristic with the `Get Active Basal Rate Delivery Response Op Code` (0x036A) and an Operand Active Basal Rate Delivery record containing the TBR details according to the TBR adjustment procedure.

4.9.8 IDS/SEN/CCP/BV-15-C [Set TBR Adjustment Procedure – With a TBR Template]

- **Test Purpose**

 Verify that the IUT can perform the `Set TBR Adjustment` procedure with the IUT supporting TBRs and TBR templates.

- **Reference**

 [3] 3.7.2.8, 4.6.2.1, and 4.6.2.12

- **Initial Condition**

 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired `<Control Point Characteristic>` set to IDD Command Control Point and IDD Status Reader Control Point characteristics.

 The IUT has a TBR Template which is set to configured and the Lower Tester acquires the template details (i.e. template number and configured status) by performing the IDS/SEN/CCP/BV-25-C [Get Template Status and Details Procedure].

 The Lower Tester acquires the TBR details for the TBR template by performing IDS/SEN/CCP/BV-17-C [Get TBR Template Procedure] procedure.

- **Test Procedure**

 1. The Lower Tester writes the `Set TBR Adjustment Op Code` (0x0FFF) to the IDD Command Control Point with an Operand with a TBR record comprising a TBR Template Number.
 2. The IUT sends an `ATT_Handle_Value_Indication` of the IDD Command Control Point characteristic with the `Response Code Op Code` (0x0F55) and an Operand consisting of `Request Op Code` (0x0FFF) followed by the `Response Code Value for Success` (0x0F).
 3. The IUT receives an `ATT_Handle_Value_Confirmation` from the Lower Tester.
4. The Lower Tester verifies that the TBR is set according to the TBR adjustment procedure and TBR Template by performing IDS/SEN/RCP/BV-06-C [Get Active Basal Rate Delivery Procedure].

5. Verify that the characteristic values meet the requirements of the service.

 • Expected Outcome

 Pass verdict

 The IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Response Code Op Code (0x0F55) and an Operand consisting of Request Op Code (0x0FFF) followed by the Response Code Value for Success (0x0F).

 The IUT sends an ATT_Handle_Value_Indication of the IDD Status Reader Control Point characteristic with the Get Active Basal Rate Delivery Response Op Code (0x036A) and an Operand Active Basal Rate Delivery record containing the TBR details according to the TBR adjustment procedure.

4.9.9 IDS/SEN/CCP/BV-16-C [Cancel TBR Adjustment Procedure]

 • Test Purpose

 Verify that the IUT can perform the Cancel TBR Adjustment procedure.

 • Reference

 [3] 3.7.2.9, 4.6.2.1

 • Initial Condition

 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point and IDD Status Reader Control Point characteristics.

 The IUT has an active TBR.

 The Lower Tester can set the active TBR by performing the IDS/SEN/CCP/BV-14-C [Set TBR Adjustment Procedure – Without a TBR Template] procedure.

 • Test Procedure

 1. The Lower Tester writes the Cancel TBR Adjustment Op Code (0x1111) to the IDD Command Control Point with no Operand.
 2. The IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Response Code Op Code (0x0F55) and an Operand consisting of the Request Op Code (0x1111) followed by the Response Code Value for Success (0x0F).
 3. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.
 4. The Lower Tester verifies that there is no active TBR based on the provided TBR settings by performing the IDS/SEN/RCP/BV-06-C [Get Active Basal Rate Delivery Procedure].
 5. Verify that the characteristic values meet the requirements of the service.

 • Expected Outcome

 Pass verdict
The IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Response Code Op Code (0x0F55) and an Operand consisting of the Request Op Code (0x1111) followed by the Response Code Value for Success (0x0F).

The IUT indicates the IDD Status Reader Control Point characteristic with the Get Active Basal Rate Delivery Response Op Code (0x036A) and an Operand Active Basal Rate Delivery record with bit 0, TBR Present, of Flags field set to 0.

4.9.10 IDS/SEN/CCP/BV-17-C [Get TBR Template Procedure]

- **Test Purpose**
 Verify that the IUT can perform the Get TBR Template procedure.

- **Reference**
 [3] 3.7.2.10, 4.6.2.14, and 4.6.2.15

- **Initial Condition**
 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point characteristic.

 The IUT has a configured TBR Template. The TBR Template can be set by the Lower Tester by performing the IDS/SEN/CCP/BV-18-C [Set TBR Template Procedure].

 The Lower Tester can acquire the template details (i.e. TBR template number and configured status) by performing the IDS/SEN/CCP/BV-25-C [Get Template Status and Details Procedure].

- **Test Procedure**
 1. The Lower Tester writes the Get TBR Template Op Code (0x111E) to the IDD Command Control Point with an Operand containing a TBR Template Number.
 2. The IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Get TBR Template Response Op Code (0x1122) and Operand TBR Template record.
 3. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.
 4. Verify that the characteristic values meet the requirements of the service.

- **Expected Outcome**
 Pass verdict

 The IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Get TBR Template Response Op Code (0x1122) and Operand TBR Template record.

4.9.11 IDS/SEN/CCP/BV-18-C [Set TBR Template Procedure]

- **Test Purpose**
 Verify that the IUT can perform the Set TBR Template procedure.

- **Reference**
 [3] 3.7.2.11, 4.6.2.16, and 4.6.2.17
• Initial Condition

Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point characteristic.

The IUT has a configurable TBR Template.

The Lower Tester acquires the template details (i.e. TBR template number and configurable status) by performing the IDS/SEN/CCP/BV-25-C [Get Template Status and Details Procedure] procedure.

• Test Procedure

1. The Lower Tester writes the Set TBR Template Op Code (0x112D) to the IDD Command Control Point with an Operand containing a TBR Template record.
2. The IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Set TBR Template Response Op Code (0x1144) and Operand TBR Template Number.
3. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.
4. The Lower Tester verifies that the TBR Template is set according to the TBR Template record by performing the IDS/SEN/CCP/BV-17-C [Get TBR Template Procedure] and that the TBR template is set to configured by performing the IDS/SEN/CCP/BV-25-C [Get Template Status and Details Procedure].
5. Verify that the characteristic values meet the requirements of the service.

• Expected Outcome

Pass verdict

The IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Set TBR Template Response Op Code (0x1144) and Operand TBR Template Number.

The TBR Template is set according to the TBR Template record and the TBR template is set to configured.

4.9.12 IDS/SEN/CCP/BV-19-C [Set Bolus Procedure – Without a Bolus Template]

• Test Purpose

Verify that the IUT can perform the Set Bolus Procedure with the bolus record not including a Bolus Template Number.

• Reference

[3] 3.7.2.12, 4.6.2.18, and 4.6.2.19

• Initial Condition

Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point and IDD Status Reader Control Point characteristics.

The IUT has an available bolus to be set and the Lower Tester acquires the currently available bolus type that can be set by performing the IDS/SEN/CCP/BV-22-C [Get Available Boluses Procedure].
• Test Procedure

Select one of the Test Patterns in Table 4.15 and perform the following steps:

1. The Lower Tester writes the Set Bolus Op Code (0x114B) to the IDD Command Control Point with an Operand containing a Bolus record with the supported bolus type as described in Table 4.15. Other parameters of the Bolus record, but not listed in Table 4.15, are set to enable the supported bolus type.

2. The IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Set Bolus Response Op Code (0x1177) and Operand Bolus ID.

3. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.

4. The Lower Tester verifies that the details of the supported bolus are set according to the Bolus record, IF Bolus Type=Extended OR Bolus Type=Multiwave OR Bolus Type=Fast AND Bolus Delay Time=present, by performing the IDS/SEN/RCP/BV-04-C [Get Active Bolus Delivery Procedure –Operand set to Programmed].

5. Verify that the characteristic values meet the requirements of the service.

• Expected Outcome

Pass verdict

The IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Set Bolus Response Op Code (0x1177) and Operand Bolus ID.

The IUT creates the Bolus ID as a unique identifier for the programmed bolus.

The IUT sets the supported bolus with the provided settings.

<table>
<thead>
<tr>
<th>Test Pattern</th>
<th>Bolus Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fast</td>
</tr>
<tr>
<td>2</td>
<td>Extended</td>
</tr>
<tr>
<td>3</td>
<td>Multiwave</td>
</tr>
</tbody>
</table>

Table 4.15: Test Patterns for IDD Command Control Point Characteristic Set Bolus procedure

4.9.13 IDS/SEN/CCP/BV-20-C [Set Bolus Procedure – With a Bolus Template]

• Test Purpose

Verify that the IUT can perform the Set Bolus procedure with the bolus record including a Bolus Template Number.

• Reference

[3] 3.7.2.12, 4.6.2.18, and 4.6.2.19

• Initial Condition
Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point and IDD Status Reader Control Point characteristics.

The IUT has a configured bolus template. The Lower Tester can acquire the template details (i.e. bolus template number and configured status) by performing the IDS/SEN/CCP/BV-25-C [Get Template Status and Details Procedure].

The Lower Tester can acquire the bolus template record details by performing the IDS/SEN/CCP/BV-23-C [Get Bolus Template Procedure].

• Test Procedure
 1. The Lower Tester writes the Set Bolus Op Code (0x114B) to the IDD Command Control Point with an Operand containing a Bolus record comprising the Bolus Template Number.
 2. The IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Set Bolus Response Op Code (0x1177) and Operand Bolus ID.
 3. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.
 4. The Lower Tester verifies that the details of the bolus are set according to the Bolus Template by performing the Get Active Bolus Delivery procedure.
 5. Verify that the characteristic values meet the requirements of the service.

• Expected Outcome
 Pass verdict

The IUT sets the bolus with the provided settings of the bolus template and ignores the values of the fields that are also available in the Bolus record.

The IUT sends an indication of the IDD Command Control Point characteristic with the Set Bolus Response Op Code (0x1177) and Operand Bolus ID.

4.9.14 IDS/SEN/CCP/BV-21-C [Cancel Bolus Procedure]

• Test Purpose
 Verify that the IUT can perform the Cancel Bolus procedure.

• Reference
 [3] 3.7.2.13, 4.6.2.20, and 4.6.2.21

• Initial Condition
 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point and IDD Status Reader Control Point characteristics.

 Perform an action on the IUT that will induce it to set a bolus with a Bolus ID that is known to the Lower Tester or perform IDS/SEN/CCP/BV-19-C [Set Bolus Procedure – Without a Bolus Template] procedure.

• Test Procedure
1. The Lower Tester writes the *Cancel Bolus* Op Code (0x1178) to the IDD Command Control Point with an Operand containing the Bolus ID of the set Bolus.
2. The IUT sends an *ATT_Handle_Value_Indication* of the IDD Command Control Point characteristic with the *Cancel Bolus Response* Op Code (0x1187) and Operand Bolus ID.
3. The IUT receives an *ATT_Handle_Value_Confirmation* from the Lower Tester.
4. The Lower Tester verifies that the bolus ID is no longer active by performing the *Get Active Bolus Delivery* procedure.
5. Verify that the characteristic values meet the requirements of the service.

- **Expected Outcome**

 Pass verdict

 The IUT cancels the bolus denoted by the specified Bolus ID.

 The IUT sends an *ATT_Handle_Value_Indication* of the IDD Command Control Point characteristic with the *Cancel Bolus Response* Op Code (0x1187) and Operand Bolus ID.

 The IUT indicates the IDD Status Reader Control Point characteristic with the Response Code Op Code (0x0303) an Operand consisting of the Request Op Code (0x0356) followed by the Response Code Value for *Procedure not applicable* (0x74).

4.9.15 IDS/SEN/CCP/BV-22-C [Get Available Boluses Procedure]

- **Test Purpose**

 Verify that the IUT can perform the *Get Available Boluses* procedure.

- **Reference**

 [3] 3.7.2.14, 4.6.2.22, and 4.6.2.23

- **Initial Condition**

 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point characteristic.

- **Test Procedure**

 1. The Lower Tester writes the *Get Available Boluses* Op Code (0x1188) to the IDD Command Control Point with no Operand.
 2. The IUT sends an *ATT_Handle_Value_Indication* of the IDD Command Control Point characteristic with the *Get Available Boluses Response* Op Code (0x11B4) and an Operand containing a Flags field.
 3. The IUT receives an *ATT_Handle_Value_Confirmation* from the Lower Tester.
 4. Verify that the characteristic values meet the requirements of the service.

- **Expected Outcome**

 Pass verdict

 The IUT checks and indicates which bolus types are currently available to be set.

 The IUT sends an *ATT_Handle_Value_Indication* of the IDD Command Control Point characteristic with the *Get Available Boluses Response* Op Code (0x11B4) and Operand containing a Flags field.
4.9.16 IDS/SEN/CCP/BV-23-C [Get Bolus Template Procedure]

• Test Purpose
 Verify that the IUT can perform the Get Bolus Template procedure.

• Reference
 [3] 3.7.2.15, 4.6.2.24, and 4.6.2.25

• Initial Condition
 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point characteristic.

 The IUT has a configured bolus template and the Lower Tester knows the Bolus Template Number.

 The Lower Tester can acquire the template details (i.e. bolus template number and configured status) by performing the IDS/SEN/CCP/BV-25-C [Get Template Status and Details Procedure].

• Test Procedure
 1. The Lower Tester writes the Get Bolus Template Op Code (0x11BB) to the IDD Command Control Point with an Operand containing a Bolus Template Number.
 2. The IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Get Bolus Template Response Op Code (0x11D2) and Operand containing a Bolus Template record.
 3. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.
 4. Verify that the characteristic values meet the requirements of the service.

• Expected Outcome
 Pass verdict

 The IUT gets and indicates the parameters of the specified bolus template.

 The IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Get Bolus Template Response Op Code (0x11D2) and Operand containing a Bolus Template record.

4.9.17 IDS/SEN/CCP/BV-24-C [Set Bolus Template Procedure]

• Test Purpose
 Verify that the IUT can perform the Set Bolus Template procedure.

• Reference
 [3] 3.7.2.16, 4.6.2.26, and 4.6.2.27

• Initial Condition
 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point characteristic.

 The IUT has a configurable bolus template and the Lower Tester knows the Bolus Template Number.
The Lower Tester can acquire the template details (i.e. bolus template number and configurable status) by performing IDS/SEN/CCP/BV-25-C [Get Template Status and Details Procedure].

• **Test Procedure**

 Select one of the Test Patterns in Table 4.16 and perform the following steps once:

 1. The Lower Tester writes the *Set Bolus Template Op Code* (0x11DD) to the IDD Command Control Point with an Operand containing a Bolus Template record with supported bolus type as described in Table 4.16. Other parameters of the Bolus Template record, but not listed in Table 4.16, are set to enable the supported bolus type.

 2. The IUT sends an *ATT_Handle_Value_Indication* of the IDD Command Control Point characteristic with the *Set Bolus Template Response Op Code* (0x11E1) and Operand containing a Bolus Template Number.

 3. The IUT receives an *ATT_Handle_Value_Confirmation* from the Lower Tester.

 4. The Lower Tester verifies that the details of the bolus template are set according the Bolus Template record by performing the IDS/SEN/CCP/BV-23-C [Get Bolus Template Procedure].

 5. The Lower Tester verifies that the bolus template status is set to configured by performing the IDS/SEN/CCP/BV-25-C [Get Template Status and Details Procedure].

 6. Verify that the characteristic values meet the requirements of the service.

• **Expected Outcome**

 Pass verdict

 The IUT sends an *ATT_Handle_Value_Indication* of the IDD Command Control Point characteristic with the *Set Bolus Template Response Op Code* (0x11E1) and Operand containing a Bolus Template Number.

 The IUT writes the settings of the bolus template record to the template with the corresponding Bolus Template Number and the template is set to configured.

<table>
<thead>
<tr>
<th>Test Pattern</th>
<th>Bolus Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fast</td>
</tr>
<tr>
<td>2</td>
<td>Extended</td>
</tr>
<tr>
<td>3</td>
<td>Multiwave</td>
</tr>
</tbody>
</table>

Table 4.16: Test Patterns for IDD Command Control Point Characteristic Set Bolus Template procedure

4.9.18 IDS/SEN/CCP/BV-25-C [Get Template Status and Details Procedure]

• **Test Purpose**

 Verify that the IUT can perform the *Get Template Status and Details Procedure*.

• **Reference**

 [3] 3.7.2.17, 3.8.1.8, 4.6.2.28, and 4.6.2.29
• Initial Condition

Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point characteristic.

• Test Procedure

1. The Lower Tester writes the Get Template Status and Details Op Code (0x11EE) to the IDD Command Control Point with no Operand.
2. For each supported profile template type, the IUT sends an ATT_Handle_Value_Notification of the IDD Command Data characteristic with Get Template Status and Details Response Op Code (0x1212) and an Operand containing a Template Status and details record.
3. The IUT sends an ATT_Handle_Value_Notification from the IUT containing the IDD Command Data characteristic handle and value to the Lower Tester.
4. After notifying the last template status and details record, the IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Response Code Op Code (0x0F55) and an Operand containing a Request Op Code (0x11EE) followed by the Response Code Value for Success (0x0F).
5. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.
6. Verify that the characteristic value meets the requirements of the service.

• Expected Outcome

Pass verdict

The IUT sends supported template status and details records.

If the Template Type field value, of Template Status and Details record, is not a Profile Template type, the Max Number of Supported Time Blocks is set to 0.

The IUT confirms the completion of the procedure by indicating the IDD Command Control Point characteristic with a Response Code Op Code (0x0F55) and Response Code Value of Success (0x0F).

4.9.19 IDS/SEN/CCP/BV-26-C [Reset Template Status Procedure]

• Test Purpose

Verify that the IUT can perform the Reset Template Status procedure.

• Reference

[3] 3.7.2.18, 4.6.2.30, and 4.6.2.31

• Initial Condition

Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point characteristic.

The IUT has one or more configurable and configured templates. The Lower Tester acquires the one or more template details by performing the IDS/SEN/CCP/BV-25-C [Get Template Status and Details Procedure].

• Test Procedure
1. The Lower Tester writes the *Reset Template Status* Op Code (0x121D) to the IDD Command Control Point with an Operand containing Number of Templates to Reset and Template Numbers.
2. The IUT sends an *ATT_Handle_Value_Indication* of the IDD Command Control Point characteristic with the *Reset Template Status Response* Op Code (0x1221) and Operand containing Number of Templates Reset and Template Numbers.
3. The IUT receives an *ATT_Handle_Value_Confirmation* from the Lower Tester.
4. The Lower Tester verifies that the reset templates are no longer configured by performing the IDS/SEN/CP/BV-25-C [Get Template Status and Details Procedure].
5. Verify that the characteristic values meet the requirements of the service.

Expected Outcome

Pass verdict

The IUT sends an *ATT_Handle_Value_Indication* of the IDD Command Control Point characteristic with the *Reset Template Status Response* Op Code (0x1221) and Operand containing Number of Templates Reset and Template Numbers.

The IUT marks the templates identified by the Template Numbers field as not configured.

4.9.20 IDS/SEN/CP/BV-27-C [Activate Profile Templates Procedure]

Test Purpose

Verify that the IUT can perform the *Activate Profile Templates* procedure.

Reference

[3] 3.7.2.19, 4.6.2.32, and 4.6.2.33

Initial Condition

Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point characteristic.

The IUT has one or more configured profile templates. The Lower Tester acquires the one or more profile template details by performing the IDS/SEN/CP/BV-25-C [Get Template Status and Details Procedure].

Test Procedure

1. The Lower Tester writes the *Activate Profile Templates* Op Code (0x122E) to the IDD Command Control Point with an Operand containing Number of Profile Templates to Activate and Profile Template Numbers with the template number to be activated.
2. The IUT sends an *ATT_Handle_Value_Indication* of the IDD Command Control Point characteristic with the *Activate Profile Templates Response* Op Code (0x1247) and Operand containing Number of Profile Templates Activated and Profile Template Numbers.
3. The IUT receives an *ATT_Handle_Value_Confirmation* from the Lower Tester.
4. The Lower Tester verifies that the profile templates identified by the Profile Template Numbers field are activated by performing the *Get Activated Profile Templates* procedure.
5. Verify that the characteristic values meet the requirements of the service.

Expected Outcome

Pass verdict
The IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Activate Profile Templates Response Op Code (0x1247) and Operand containing a Number of Profile Templates Activated and Profile Template Numbers.

The IUT activates the profile templates identified by the Profile Template Numbers field.

4.9.21 IDS/SEN/CCP/BV-28-C [Get Activated Profile Templates Procedure]

* Test Purpose
 Verify that the IUT can perform the Get Activated Profile Templates procedure.

* Reference
 [3] 3.7.2.20, 4.6.2.34, and 4.6.2.35

* Initial Condition
 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point characteristic.

 The IUT has one or more configured templates, but none active.

* Test Procedure

 1. The Lower Tester writes the Get Activated Profile Templates Op Code (0x1248) to the IDD Command Control Point with no Operand.
 2. The IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Get Activated Profile Templates Response Op Code (0x1274) and Operand containing the Number of Active Profile Templates field set to 0 and no Profile Template Numbers field.
 3. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.
 4. The Lower Tester activates the one or more configured templates by performing the IDS/SEN/CCP/BV-27-C [Activate Profile Templates Procedure].
 5. The Lower Tester writes the Get Activated Profile Templates Op Code (0x1248) to the IDD Command Control Point with no Operand.
 6. The IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Get Activated Profile Templates Response Op Code (0x1274) andOperand containing the Number of Activated Profile Templates field set to the number of templates activated and Profile Template Numbers field set to the activated profile template numbers.
 7. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.
 8. Verify that the characteristic values meet the requirements of the service.

* Expected Outcome

 Pass verdict

 If there are currently no active profile templates, the IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Get Activated Profile Templates Response Op Code (0x1274) and Operand containing the Number of Active Profile Templates field set to 0 and no Profile Template Numbers field.

 After the one or more configured template are activated, in step 6, the IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Get
4.9.22 IDS/SEN/CP/P-29-C [Start and Stop Priming Procedures]

- Test Purpose
 Verify that the IUT can perform the Start and Stop Priming procedures.

- Reference
 [3] 3.7.2.21, 3. 7.2.22, 4.6.2.1, and 4.6.2.36

- Initial Condition
 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point characteristic.

- Test Procedure
 1. The Lower Tester writes the Start Priming Op Code (0x127B) to the IDD Command Control Point with an Operand Amount field value as specified in the IXIT [8].
 2. The IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Response Code Op Code (0x0F55) and an Operand containing the Request Op Code (0x127B) followed by the Response Code Value for Success (0x0F).
 3. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.
 4. Verify that the characteristic values meet the requirements of the service.
 5. The Lower Tester writes the Stop Priming Op Code (0x1284) to the IDD Command Control Point with no Operand.
 6. The IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Response Code Op Code (0x0F55) and an Operand containing the Request Op Code (0x1284) followed by the Response Code Value for Success (0x0F).
 7. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.
 8. Verify that the characteristic values meet the requirements of the service.

- Expected Outcome
 Pass verdict

The IUT confirms the execution of the Start Priming procedure by sending an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Response Code Op Code (0x0F55) and an Operand containing the Request Op Code (0x127B) followed by the Response Code Value for Success (0x0F).

The IUT confirms the execution of the Stop Priming procedure by sending an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Response Code Op Code (0x0F55) and an Operand containing the Request Op Code (0x1284) followed by the Response Code Value for Success (0x0F).
4.9.23 IDS/SEN/CCP/BV-30-C [Set Initial Reservoir Fill Level Procedure]

- **Test Purpose**
 Verify that the IUT can perform the Set Initial Reservoir Fill Level procedure.

- **Reference**
 [3] 3.7.2.23, 4.6.2.1, and 4.6.2.38

- **Initial Condition**
 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point characteristic.

- **Test Procedure**
 1. The Lower Tester writes the Set Initial Reservoir Fill Level Op Code (0x128B) to the IDD Command Control Point with an Operand Fill Level.
 2. The IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Response Code Op Code (0x0F55) and an Operand containing the Request Op Code (0x128B) followed by the Response Code Value for Success (0x0F).
 3. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.
 4. The Lower Tester verifies that the reservoir fill level was set according to the Fill Level field by reading the IDD Status characteristic Reservoir Remaining Amount field.
 5. Verify that the characteristic values meet the requirements of the service.

- **Expected Outcome**
 Pass verdict
 The IUT sets the fill level of the reservoir to the provided insulin level.

 The IUT indicates the IDD Command Control Point characteristic with the Response Code Op Code (0x0F55) and an Operand containing the Request Op Code (0x128B) followed by the Response Code Value for Success (0x0F).

4.9.24 IDS/SEN/CCP/BV-31-C [Reset Reservoir Insulin Operation Time Procedure]

- **Test Purpose**
 Verify that the IUT can perform the Reset Reservoir Insulin Operation Time procedure.

- **Reference**
 [3] 3.6.2.6, 3.7.2.24, 4.5.2.11, 4.5.2.12, and 4.6.2.1

- **Initial Condition**
 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point and IDD Status Reader Control Point characteristics.

 The IUT’s Counter Type Reservoir Insulin Operation Time Remaining default value is reported in the IXIT [8].
• Test Procedure

1. The Lower Tester writes the *Reset Reservoir Insulin Operation Time Op Code* (0x12B7) to the IDD Command Control Point with no Operand.

2. The IUT sends an *ATT_Handle_Value_Indication* of the IDD Command Control Point characteristic with the *Response Code Op Code* (0x0F55) and an Operand containing the *Request Op Code* (0x12B7) followed by the *Response Code Value for Success* (0x0F).

3. The IUT receives an *ATT_Handle_Value_Confirmation* from the Lower Tester.

4. The Lower Tester writes the *Get Counter Op Code* (0x03A6) to the IDD Status Reader Control Point using the Operand consisting of Counter Type *Reservoir Insulin Operation Time* (0x55) and a Counter Value Selection set to *Remaining* (0x0F),

 a. IF the *Get Counter Op Code* (0x03A6) is NOT supported, the IUT sends an *ATT_Handle_Value_Indication* of the IDD Status Reader Control Point characteristic with *Response Code Op Code* (0x0303) and an Operand consisting of the *Request Op Code* (0x03A6) followed by the *Response Code Value for Op Code not supported* (0x70).

 b. ELSE IF the Counter Type *Reservoir Insulin Operation Time* (0x55) is NOT supported OR Counter Value Selection *Remaining* (0x0F) is NOT supported, the IUT sends an *ATT_Handle_Value_Indication* of the IDD Status Reader Control Point characteristic with *Response Code Op Code* (0x0303) and an Operand consisting of the *Request Op Code* (0x03A6) followed by the *Response Code Value for Invalid Operand* (0x71).

 c. ELSE, the IUT sends an *ATT_Handle_Value_Indication* of the IDD Status Reader Control Point characteristic with the *Get Counter Response* (0x03A9) and an Operand containing a Counter record with the details of the Counter Type *Reservoir Insulin Operation Time* (0x55) and Counter Value Selection *Remaining* (0x0F) value.

5. The IUT receives an *ATT_Handle_Value_Confirmation* from the Lower Tester.

6. IF the *Get Counter Op Code* (0x03A6) is supported, repeat Steps 4 and 5 with the Counter Value Selection set to *Elapsed* (0x33).

7. Verify that the characteristic values meet the requirements of the service.

• Expected Outcome

Pass verdict

The IUT indicates the IDD Command Control Point characteristic with the *Response Code Op Code* (0x0F55) and an Operand containing the *Request Op Code* (0x12B7) followed by the *Response Code Value for Success* (0x0F).

If the *Get Counter* procedure, Counter Type *Reservoir Insulin Operation Time* (0x55) and either or both Counter Value Selections are supported, the IUT indicates the IDD Status Reader Control Point characteristic with the *Get Counter Response* (0x03A9) and an Operand containing a Counter record with the details of the Counter Type *Reservoir Insulin Operation Time* (0x55) and,

- Counter Value Selection Remaining (0x0F) value which matches the default value, or
Counter Value Selection Elapsed (0x33) value which matches 0.

The reset of the Reservoir Insulin Operation Time (0x55) counter value for Remaining (0x0F), provided in the IXIT [8], and Elapsed (0x33) are considered to match the values reported by the Get Counter procedure if the difference in time is less than or equal to what can be explained by distance in a minute between the Lower Tester and IUT completing all test steps.

If the Get Counter Op Code is NOT supported, the IUT indicates the IDD Status Reader Control Point characteristic with Response Code Op Code (0x0303) and an Operand consisting of the Request Op Code (0x03A6) followed by the Response Code Value for Op Code not supported (0x70).

If the Counter Type Reservoir Insulin Operation Time (0x55) OR the selected Counter Value Selections are NOT supported, the IUT indicates the IDD Status Reader Control Point characteristic with Response Code Op Code (0x0303) and an Operand consisting of the Request Op Code (0x03A6) followed by the Response Code Value for Invalid Operand (0x71).

4.9.25 IDS/SEN/CP/BV-32-C [Get Max Bolus Amount Procedure]

• Test Purpose
Verifying that the IUT can perform the Get Max Bolus Amount procedure.

• Reference
[3] 3.7.2.31, 4.6.2.52, and 4.6.2.53

• Initial Condition
Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point characteristic.

The IUT’s Max Bolus Amount field is set and the value is reported in the IXIT [8].

• Test Procedure
1. The Lower Tester writes the Get Max Bolus Amount Op Code (0x147D) to the IDD Command Control Point with no Operand.
2. The IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Get Max Bolus Amount Response Op Code (0x1482) and an Operand containing the Max Bolus Amount.
3. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.
4. Verify that the characteristic values meet the requirements of the service.

• Expected Outcome
Pass verdict

The IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Get Max Bolus Amount Response Op Code (0x1482) and an Operand containing the Max Bolus Amount.

The IUT reports the maximum bolus amount that can be delivered in a single bolus.

4.9.26 IDS/SEN/CP/BV-33-C [Set Max Bolus Amount Procedure]

• Test Purpose
Verify that the IUT can perform the Set Max Bolus Amount procedure.

- **Reference**

 [3] 3.7.2.32, 4.6.2.1, and 4.6.2.54

- **Initial Condition**

 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point characteristic.

 The IUT’s Max Bolus Amount field value is known from the IXIT [8].

- **Test Procedure**

 1. The Lower Tester writes the Set Max Bolus Amount Op Code (0x148D) to the IDD Command Control Point with an Operand containing a Max Bolus Amount field.
 2. The IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Response Code Op Code (0x0F55) and an Operand containing the Request Op Code (0x148D) followed by the Response Code Value for Success (0x0F).
 3. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.
 4. The Lower Tester verifies that the set maximum bolus amount that can be delivered in a single bolus is set according to the IXIT [8].
 5. Verify that the characteristic values meet the requirements of the service.

- **Expected Outcome**

 Pass verdict

 The IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Response Code Op Code (0x0F55) and an Operand containing the Request Op Code (0x148D) followed by the Response Code Value for Success (0x0F).

4.9.27 IDD Command Control Point – Error Handling

This test group contains test cases to verify compliant operation of the IUT when an IDD Command Control Point is written with an invalid operand or operand is out of range or IUT does not support the procedure or other errors specific to the procedure or control point.

4.9.27.1 IDS/SEN/CCPE/BI-01-C [Command CP – Op Code not supported]

- **Test Purpose**

 Verify that the IUT responds appropriately when a Client writes an unsupported Op Code, where the procedure refers to a feature that is not supported, to the IDD Command Control Point.

- **Reference**

 [3] 3.7.1, 3.11.4, 4.6.2.1

- **Initial Condition**

 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point characteristic.
The Lower Tester knows the IUT unsupported features by reading the IDD Feature Flags field (Flags field supported feature bit is set to False).

- **Test Procedure**

 1. The Lower Tester writes an Op Code, where the procedure refers to a feature that is not supported, to the IDD Command Control Point with an appropriate Operand.
 2. The IUT sends an `ATT_Handle_Value_Indication` of the IDD Command Control Point characteristic with the `Response Code Op Code` (0x0F55) and an Operand containing the `Request Op Code` (selected value from Step 1) followed by the `Response Code Value for Op Code not supported` (0x70).
 3. The IUT receives an `ATT_Handle_Value_Confirmation` from the Lower Tester.
 4. Verify that the characteristic values meet the requirements of the service.

- **Expected Outcome**

 Pass verdict

The IUT sends an `ATT_Handle_Value_Indication` of the IDD Command Control Point characteristic with the `Response Code Op Code` (0x0F55) and an Operand containing the `Request Op Code` (selected value from Step 1) followed by the `Response Code Value for Op Code not supported` (0x70).

4.9.27.2 IDS/SEN/CCPE/BI-02-C [Set Therapy Control State Procedure – Invalid operand]

- **Test Purpose**

 Verify that the IUT does not perform the `Set Therapy Control State` procedure with an Operand set to Undetermined or RFU.

- **Reference**

 [3] 3.7.2.2, 3.11.4, 4.6.2.1 and 4.6.2.2

- **Initial Condition**

 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired `<Control Point Characteristic>` set to IDD Command Control Point characteristic.

- **Test Procedure**

 Select one of the Test Patterns in Table 4.17 and perform the following steps once:

 1. The Lower Tester writes the `Set Therapy Control State` Op Code (0x0F5A) to the IDD Command Control Point with an Operand containing a Therapy Control State field set as described in Table 4.17.
 2. The IUT sends an `ATT_Handle_Value_Indication` of the IDD Command Control Point characteristic with the Response Code Value Op Code (0x0F55) and an Operand representing the `Request Op Code` (0x0F5A) followed by the `Response Code Value for Invalid operand` (0x71).
 3. The IUT receives an `ATT_Handle_Value_Confirmation` from the Lower Tester.
 4. Verify that the characteristic value meets the requirements of the service.

- **Expected Outcome**
Pass verdict

The IUT sends an indication of the IDD Command Control Point characteristic with the Response Code Value Op Code (0x0F55) and an Operand representing the Request Op Code (0x0F5A) followed by the Response Code Value for Invalid operand (0x71).

<table>
<thead>
<tr>
<th>Test Pattern</th>
<th>Therapy Control State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Set to RFU</td>
</tr>
<tr>
<td>2</td>
<td>Set to Undetermined</td>
</tr>
</tbody>
</table>

Table 4.17: Test Patterns for IDD Command Control Point Characteristic Set Therapy Control State procedure

4.9.27.3 IDS/SEN/CCPE/BI-03-C [Write Basal Rate Profile Template Procedure – Parameter out of range]

- **Test Purpose**
 Verify that the IUT does not perform the Write Basal Rate Profile Template procedure with an Operand Basal Rate Profile Template record with the Profile Template record parameters described in Table 4.18.

- **Reference**
 [3] 3.7.2.1.2, 3.7.2.7, 3.11.4, 4.6.2.1 and 4.6.2.10

- **Initial Condition**
 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point characteristic.

 The IUT has Basal Rate Profile Template with status set to configurable and the Lower Tester acquires the template details by performing the IDS/SEN/CCP/BV-25-C [Get Template Status and Details Procedure] procedure.

- **Test Procedure**
 Select one of the Test Patterns in Table 4.18 and perform the following steps once:

 1. The Lower Tester writes the Write Basal Rate Profile Template Op Code (0x0FCC) to the IDD Command Control Point with an Operand comprising the Basal Rate Profile Template record with the appropriate Flags field (Bit 0, End Transaction, set to False), and a profile template number, first time block number index, and time blocks as described in Table 4.18.

 2. The IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Request Code Op Code (0x0F55) and an Operand consisting of the Request Op Code (0x0FCC) followed by the Response Code Value for Parameter out of range (0x73).

 3. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.

 4. Verify that the characteristic values meet the requirements of the service.

- **Expected Outcome**
Pass verdict

The IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Response Code Op Code (0x0F55) and an Operand consisting of the Request Op Code (0x0FCC) followed by the Response Code Value for Parameter out of range (0x73).

<table>
<thead>
<tr>
<th>Test Pattern</th>
<th>Profile Template record parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Profile Template Number</td>
<td>Out of range</td>
</tr>
<tr>
<td>2</td>
<td>First Time Block Number Index</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>First Time Block Number Index</td>
<td>Greater than the maximum number of supported time blocks supported by profile</td>
</tr>
<tr>
<td>4</td>
<td>Number of time blocks</td>
<td>Greater than the maximum number of supported time blocks supported by profile</td>
</tr>
</tbody>
</table>

Table 4.18: Test Patterns for Write Basal Rate Profile Template Procedure – Parameter out of range

4.9.27.4 IDS/SEN/CCPE/BI-04-C [Stop Priming Procedure – Procedure not applicable]

• Test Purpose
 Verify that the IUT does not perform the Stop Priming procedure when a Start Priming procedure was not started.

• Reference
 [3] 3.7.2.22, 3.11.4, and 4.6.2.1

• Initial Condition
 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point characteristic.

 A Start Priming procedure is not initiated.

• Test Procedure
 1. The Lower Tester writes the Stop Priming Op Code (0x1284) to the IDD Command Control Point with no Operand.
 2. The IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Response Code Op Code (0x0F55) and an Operand containing the Request Op Code (0x1284) followed by the Response Code Value for Procedure not applicable (0x74).
 3. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.
 4. Verify that the characteristic values meet the requirements of the service.

• Expected Outcome
 Pass verdict
The IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Response Code Op Code (0x0F55) and an Operand containing the Request Op Code (0x1284) followed by the Response Code Value for Procedure not applicable (0x74).

4.9.27.5 IDS/SEN/CCPE/BI-05-C [Write Basal Rate Profile Template Procedure – Plausibility check failed within a transaction]

- **Test Purpose**
 Verify that the IUT does not perform the Write Basal Rate Profile Template procedure when the plausibility check fails within a transaction.

- **Reference**
 [3] 3.7.2.1.2, 3.7.2.7, 4.6.2.1, and 4.6.2.10

- **Initial Condition**
 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point characteristic.

The IUT has a basal rate profile template with status set to configurable and the Lower Tester acquires the template details by performing the IDS/SEN/CCP/BV-25-C [Get Template Status and Details Procedure].

The IUT supports more than one basal rate template.

- **Test Procedure**
 1. The Lower Tester writes the Write Basal Rate Profile Template Op Code (0x0FCC) to the IDD Command Control Point with an Operand comprising the Basal Rate Profile Template record with the Flags field Bit 0 (Transaction Completed), set to False, Bit 1 (Second Time Block Present) and Bit 2 (Third Time Block Present) set to True.
 2. For the received profile template record, the IUT performs a plausibility check. After a successful plausibility check, the IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Write Basal Rate Profile Template Response Op Code (0x0FF0) and an Operand containing the appropriate Flags Field (Bit 0, Transaction Completed, set to False), profile template number and first time block number index.
 3. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.
 4. Using one of the Test Patterns in Table 4.19, the Lower Tester writes the Write Basal Rate Profile Template Op Code (0x0FCC) to the IDD Command Control Point with an Operand comprising the Basal Rate Profile Template record with the appropriate Flags field (Bit 0, End Transaction, set to False), and parameters as described in Table 4.19.
 5. For the received profile template record, the IUT performs a plausibility check. The IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Response Code Op Code (0x0F55) and anOperand consisting of the Request Op Code (0x0FCC) followed by the Response Code Value for Plausibility check failed (0x75).
 6. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.
 7. Verify that the characteristic values meet the requirements of the service.

- **Expected Outcome**
 Pass verdict
In Step 2, after the successful plausibility check, the IUT sends an `ATT_Handle_Value_Indication` of the IDD Command Control Point characteristic with the `Write Basal Rate Profile Template Response Op Code` (0x0FF0) and an Operand containing the appropriate Flags Field (Bit 0, Transaction Completed, set to `False`), profile template number and first time block number index.

In Step 5, the IUT sends an `ATT_Handle_Value_Indication` of the IDD Command Control Point characteristic with the `Response Code Op Code` (0x0F55) and an Operand consisting of the `Request Op Code` (0x0FCC) followed by the `Response Code Value for Plausibility check failed` (0x75).

<table>
<thead>
<tr>
<th>Test Pattern</th>
<th>Invalid Operand Parameter</th>
<th>Valid Operand Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A different Basal Rate Profile Template Number</td>
<td>• First Time Block Number Index</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Duration(s) and Rate(s) (as applicable)</td>
</tr>
<tr>
<td>2</td>
<td>A repeated First Time Block Number Index</td>
<td>• Basal Rate Profile Template</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Duration(s) and Rate(s) (as applicable)</td>
</tr>
<tr>
<td>3</td>
<td>First Time Block Number Index set to 2</td>
<td>• Basal Rate Profile Template</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Duration(s) and Rate(s) (as applicable)</td>
</tr>
</tbody>
</table>

Table 4.19: Test Patterns for Write Basal Rate Profile Template Procedure - Plausibility check within a transaction

4.9.27.6 IDS/SEN/CCPE/BI-06-C [Write Basal Rate Profile Template Procedure – Plausibility check failed at the end of a transaction]

- **Test Purpose**
 Verify that the IUT does not perform the `Write Basal Rate Profile Template` procedure when the plausibility check fails at the end of a transaction.

- **Reference**
 [3] 3.7.2.1.2, 3.7.2.7, 4.6.2.1, and 4.6.2.10

- **Initial Condition**
 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired `<Control Point Characteristic>` set to IDD Command Control Point characteristic.

 The IUT has a basal rate profile template with status set to configurable and the Lower Tester acquires the template details by performing the IDS/SEN/CCP/BV-25-C [Get Template Status and Details Procedure].

- **Test Procedure**
 Select one of the Test Patterns in Table 4.20 and perform the following steps:
 1. The Lower Tester writes the `Write Basal Rate Profile Template` Op Code (0x0FCC) to the IDD Command Control Point with an Operand comprising the Basal Rate Profile Template record with Flags field (Bit 0, End Transaction, set to `True`), a profile template number, and first time block number index, duration(s) and rate(s) as described in Table 4.20.
2. For the received profile template record, the IUT performs an end of a transaction plausibility check using the selected Test Pattern in Table 4.20. The IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Response Code Op Code (0x0F55) and an Operand consisting of the Request Op Code (0x0FCC) followed by the Response Code Value for Plausibility check failed (0x75).
3. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.
4. Verify that the characteristic values meet the requirements of the service.

- Expected Outcome
 - Pass verdict

The IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Response Code Op Code (0x0F55) and an Operand consisting of the Request Op Code (0x0FCC) followed by the Response Code Value for Plausibility check failed (0x75).

<table>
<thead>
<tr>
<th>Test Pattern</th>
<th>Plausibility Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The sum of all time block durations is less (<) than 24 h and there are no gaps between the time blocks</td>
</tr>
<tr>
<td>2</td>
<td>The sum of all time block durations is greater (>) than 24 h and there are no gaps between the time blocks</td>
</tr>
<tr>
<td>3</td>
<td>The sum of all time block durations is (=) 24 h and there are gaps between the time blocks</td>
</tr>
</tbody>
</table>

Table 4.20: Test Patterns for Write Basal Rate Profile Template Procedure - Plausibility check at the end of a transaction

4.9.27.7 IDS/SEN/CCPE/BI-07-C [Set Bolus Procedure – Maximum Bolus Number Reached]

- Test Purpose
 - Verify that the IUT does not perform the Set Bolus procedure if a bolus of a specified type is currently not available.

- Reference
 - [3] 3.7.2.12, 4.6.2.1, and 4.6.2.18

- Initial Condition
 - Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point characteristic.
 - Perform an action on the IUT that sets the maximum number of allowed boluses for a supported bolus type as indicated in the IXIT [8].

- Test Procedure
 - 1. The Lower Tester writes the Set Bolus Op Code (0x114B) to the IDD Command Control Point with an Operand containing a Bolus record with a new bolus set to the supported bolus type for the maximum number of allowed boluses according to the IXIT [8].
2. The IUT sends an **ATT_Handle_Value_Indication** of the IDD Command Control Point characteristic with the *Response Code* Op Code (0xF55) and an Operand consisting of the *Request Op Code* (0x114B) followed by the *Response Code Value* *Maximum Bolus Number reached* (0x76).

3. The IUT receives an **ATT_Handle_Value_Confirmation** from the Lower Tester.

4. Verify that the characteristic values meet the requirements of the service.

- **Expected Outcome**

 Pass verdict

 The IUT sends an **ATT_Handle_Value_Indication** of the IDD Command Control Point characteristic with the *Response Code* Op Code (0xF55) and an Operand consisting of the *Request Op Code* (0x114B) followed by the *Response Code Value* *Maximum Bolus Number reached* (0x76).

4.9.27.8 IDS/SEN/CCPE/BI-08-C [Activate Profile Templates Procedure – Procedure not applicable]

- **Test Purpose**
 Verify that the IUT does not perform the *Activate Profile Templates* procedure with a profile template which is not configured.

- **Reference**
 [3] 3.7.2.19, 4.6.2.1, 4.6.2.32, and 4.6.2.33

- **Initial Condition**
 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired `<Control Point Characteristic>` set to IDD Command Control Point characteristic.

 The IUT supports at least two templates, one template is set to configured and the second template is set to not configured as indicated in the IXIT [8].

 The IUT has no active profile template.

 The Lower Tester acquires the template details (template numbers, configurable and configured status) by performing the IDS/SEN/CCP/BV-25-C [Get Template Status and Details Procedure].

- **Test Procedure**
 1. The Lower Tester writes the *Activate Profile Templates* Op Code (0x122E) to the IDD Command Control Point with an Operand containing Number of Profile Templates to Activate set to at least 2 and the Profile Template Numbers include the configured template and the not configured template.
 2. The IUT sends an **ATT_Handle_Value_Indication** of the IDD Command Control Point characteristic with the *Response Code* Op Code (0xF55) and an Operand containing the *Request Op Code* (0x122E) followed by the *Response Code Value* for *Procedure not applicable* (0x74).
 3. The IUT receives an **ATT_Handle_Value_Confirmation** from the Lower Tester.
 4. The Lower Tester writes the *Get Activated Profile Templates* Op Code (0x1248) to the IDD Command Control Point with no Operand.
5. The IUT sends an `ATT_Handle_Value_Indication` of the IDD Command Control Point characteristic with the `Get Activated Profile Templates Response Op Code` (0x1274) and Operand containing the Number of Activated Profile Templates field set to 0.

6. The IUT receives an `ATT_Handle_Value_Confirmation` from the Lower Tester.

7. Verify that the characteristic values meet the requirements of the service.

- Expected Outcome

 Pass verdict

 The IUT sends an `ATT_Handle_Value_Indication` of the IDD Command Control Point characteristic with the `Response Code Op Code` (0x0F55) and an Operand containing the `Request Op Code` (0x122E) followed by the `Response Code Value` for `Procedure not applicable` (0x74).

 The IUT sends an `ATT_Handle_Value_Indication` of the IDD Command Control Point characteristic with the `Get Activated Profile Templates Response Op Code` (0x1274) and Operand containing the Number of Activated Profile Templates field set to 0.

4.10 IDD Record Access Control Point Procedures

This test group contains test cases to verify that the IUT can be configured, conducts compliant operation, provides correctly formatted values of the IDD History Data characteristic and interprets correctly values of the IDD Record Access Control Point characteristic.

Table 3.22 in [3] defines the Op Codes, Operators and Operand values used in the IDD Record Access Control Point procedure test cases in this section.

4.10.1 IDS/SEN/RAN/BV-01-C [Report Number of Stored Records Procedure]

- **Test Purpose**

 Verify that the IUT can perform the *Report Number of Stored Records* procedure with the combination of Operators and Operands listed in Table 4.21.

 If the combination of the Operator and Operand is supported the IUT reports a valid response. Where the Operator or Operand or the combination is not supported the IUT reports a valid error response.

- **Reference**

 [3] 3.9.3, 3.9.4.1, and 3.9.4.2

- **Initial Condition**

 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired `<Control Point Characteristic>` set to IDD Record Access Control Point characteristic.

 Perform an action on the IUT that will induce it to generate at least 5 records; of which one record should be a supported reference time history event.

 The Lower Tester knows the Sequence Number for the records.

- **Test Procedure**

 1. For each `<Operator>` in Table 4.21, perform the following steps (outer loop):
a. For each <Operand> in Table 4.21, perform the following steps (inner loop):

i. The Lower Tester writes the Report Number of Stored Records Op Code (0x5A) to the IDD RACP using the listed <Operator>, <Operand> and corresponding filter parameter(s).

ii. IF the <Operator> is NOT supported, the IUT sends an ATT_Handle_Value_Indication of the IDD RACP characteristic with the Response Code Op Code (0x0F), an Operator of Null (0x0F) and an Operand representing the Request Op Code (0x5A) followed by the Response Code Value for Operator not supported (0x04).

iii. ELSE IF the <Operand> is NOT supported, the IUT sends an ATT_Handle_Value_Indication of the IDD RACP characteristic with the Response Code Op Code (0x0F), an Operator of Null (0x0F) and an Operand representing the Request Op Code (0x5A) followed by the Response Code Value for Operand not supported (0x09).

iv. ELSE, the IUT sends an ATT_Handle_Value_Indication of the IDD RACP characteristic with the Number of Stored Records Response Op Code (0x66) an Operator of Null (0x0F) and an Operand representing the number of records that were found.

v. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.

2. Verify that the characteristic value meets the requirements of the service.

 • Expected Outcome

 Pass verdict

 For each combination of <Operator> and <Operand>, the IUT sends

 - one indication of the IDD Record Access Control Point characteristic with the Number of Stored Records Response Op Code containing a valid Operator and Operand. The value of the Operand represents the correct number of available records (Combination supported).

 OR

 - the appropriate error message (Combination not supported).

<table>
<thead>
<tr>
<th>Outer Loop: Operator</th>
<th>Inner Loop: Operand</th>
<th>Inner: Sequence Number (0x0F)</th>
<th>Inner: Sequence number filtered by Reference Time Event (0x33)</th>
<th>Inner: Sequence Number filtered by Non-Reference Time Event (0x3C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All records (0x33)</td>
<td>No filter parameter</td>
<td>No filter parameter</td>
<td>No filter parameter</td>
<td></td>
</tr>
<tr>
<td>Less than or equal to (0x3C)</td>
<td><Max filter value></td>
<td><Max filter value></td>
<td><Max filter value></td>
<td><Max filter value></td>
</tr>
<tr>
<td>Greater than or equal to (0x55)</td>
<td><Min filter value></td>
<td><Min filter value></td>
<td><Min filter value></td>
<td><Min filter value></td>
</tr>
<tr>
<td>Within range of (inclusive) (0x5A)</td>
<td><Min filter value>, <Max filter value></td>
</tr>
</tbody>
</table>
Inner Loop: Operand

<table>
<thead>
<tr>
<th></th>
<th>Sequence Number (0x0F)</th>
<th>Sequence number filtered by Reference Time Event (0x33)</th>
<th>Sequence number filtered by Non-Reference Time Event (0x3C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First record (0x66)</td>
<td>No filter parameter</td>
<td>No filter parameter</td>
<td>No filter parameter</td>
</tr>
<tr>
<td>Last record (0x69)</td>
<td>No filter parameter</td>
<td>No filter parameter</td>
<td>No filter parameter</td>
</tr>
</tbody>
</table>

The following apply to the filter parameters:

- Maximum (Max) filter value must not be greater than the largest known sequence number value.
- Minimum (Min) filter value must not be less than the lowest known sequence number value.
- Minimum (Min) filter value must be less than or equal to the Maximum (Max) filter value.

Table 4.21: IDD RACP – Operators and Operands

4.10.2 IDS/SEN/RAN/BV-02-C [Report Number of Stored Records Procedure - With no records]

- **Test Purpose**
 Verify that the IUT responds properly if the *Report Number of Stored Records* procedure is performed with an Operator of *All records* and Operand *Sequence Number* when the IUT does not contain any records.

- **Reference**
 [3] 3.9.3, 3.9.4.1, and 3.9.4.2

- **Initial Condition**
 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired `<Control Point Characteristic>` set to IDD Record Access Control Point characteristic.

 Perform an action on the IUT that will induce it to remove all the stored records (by having the Lower Tester perform a *Delete Stored Records* procedure) or the Lower Tester knows the last sequence number.

- **Test Procedure**
 1. The Lower Tester writes the *Report Number of Stored Records* Op Code (0x5A) to the IDD RACP using a combination of mandatory Operator and Operand which request records number which do not exist.
 2. The IUT sends an *ATT_Handle_Value_Indication* of the IDD RACP characteristic with the *Number of Stored Records Response* Op Code (0x66) an Operator of *Null* (0x0F) and an Operand representing that no records were found (0x0000 0000).
 3. The IUT receives an *ATT_Handle_Value_Confirmation* from the Lower Tester.
 4. Verify that the characteristic value meets the requirements of the service.

- **Expected Outcome**
 Pass verdict
The IUT sends an indication of the IDD RACP characteristic with the *Number of Stored Records Response* Op Code (0x66) an Operator of *Null* (0x0F) and an Operand representing that no records were found (0x0000 0000).

4.10.3 IDS/SE/N/RAD/BV-01-C [Delete Stored Records Procedure]

Test Purpose

Verify the IUT can perform the *Delete Stored Records* procedure with the combination of Operators and Operands listed in Table 4.21.

If the combination of the Operator and Operand is supported the IUT reports a valid response. Where the Operator or Operand or the combination is not supported the IUT reports a valid error response.

Reference

[3] 3.9.3, 3.9.4.1, and 3.9.4.3

Initial Condition

Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired *<Control Point Characteristic>* set to IDD Record Access Control Point characteristic.

Test Procedure

1. Perform an action on the IUT that will induce it to generate at least 5 records; of which one record should be a supported reference time history event.
2. Verify that the Lower Tester knows the Sequence Number for the generated records.
3. For each *<Operator>* in Table 4.21, perform the following steps (outer loop):
 a. For each *<Operand>* in Table 4.21, perform the following steps (inner loop):
 i. The Lower Tester writes the *Delete Stored Records* Op Code (0x3C) to the IDD RACP using the listed *<Operator>* , *<Operand>* and corresponding filter parameter(s).
 ii. IF the *<Operator>* is NOT supported, the IUT sends an *ATT_Handle_Value_Indication* of the IDD RACP characteristic with the *Response Code* Op Code (0x0F), an Operator of *Null* (0x0F) and an Operand representing the *Request Op Code* (0x3C) followed by the *Response Code Value for Operator not supported* (0x04).
 a) The IUT receives an *ATT_Handle_Value_Confirmation* from the Lower Tester.
 iii. ELSE IF the *<Operand>* is NOT supported, the IUT sends an *ATT_Handle_Value_Indication* of the IDD RACP characteristic with the *Response Code* Op Code (0x0F), an Operator of *Null* (0x0F) and an Operand representing the *Request Op Code* (0x3C) followed by the *Response Code Value for Operand not supported* (0x09).
 a) The IUT receives an *ATT_Handle_Value_Confirmation* from the Lower Tester.
 iv. ELSE IF the *<Operand>* is *Sequence Number filtered by Reference Time Event* and NO reference time events exist in the requested sequence number range OR IF the *<Operand>* is *Sequence Number filtered by Non-Reference Time Event* and ONLY reference time events exist in the requested sequence number range, the IUT sends
an ATT_Handle_Value_Indication of the IDD RACP characteristic with the Response Code Op Code (0x0F) an Operator of Null (0x0F) and an Operand representing the Request Op Code (0x3C) followed by the Response Code Value for No Records Found (0x06).

a) The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.

v. ELSE, the IUT sends an ATT_Handle_Value_Indication of the IDD RACP characteristic with the Response Code Op Code (0x0F) an Operator of Null (0x0F) and an Operand representing the Request Op Code (0x3C) followed by the Response Code for Success (0xF0).

a) The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.

b) The Lower Tester verifies that the desired records have been deleted by performing the Report Number of Stored Records Op Code (0x5A) with an applicable Operator and Operand.

c) Perform an action on the IUT that will induce it to generate at least 5 records; of which one record should be a supported reference time history event.

d) Verify that the Lower Tester knows the Sequence Number for the generated records.

4. Verify that the characteristic value meets the requirements of the service

• Expected Outcome

Pass verdict

For each combination of <Operator> and <Operand>, the IUT sends

- one indication of the IDD RACP characteristic with the Response Code Op Code containing a valid Operator and Operand for each operation (Combination supported).

 OR

- the appropriate error message (Combination not supported)

The Sequence Number is not reset by the Delete Stored Records operation.

4.10.4 IDS/SEN/RAR/BV-01-C [Report Stored Records Procedure]

• Test Purpose

Verify the IUT can perform the Report Stored Records procedure with the combination of Operators and Operands listed in Table 4.21.

If the combination of the Operator and Operand is supported the IUT reports a valid response. Where the Operator or Operand or the combination is not supported the IUT reports a valid error response.

• Reference

[3] 3.9.3, 3.9.4.1, and 3.9.4.4

• Initial Condition
Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Record Access Control Point characteristic.

Perform an action on the IUT that will induce it to generate at least 5 records; of which one record should be a supported reference time history event.

The Lower Tester knows the Sequence Number for the records.

• Test Procedure
 1. For each <Operator> in Table 4.21, perform the following steps (outer loop):
 a. For each <Operand> in Table 4.21, perform the following steps (inner loop):
 i. The Lower Tester writes the Report Stored Records Op Code (0x33) to the IDD RACP using the listed <Operator>, <Operand> and corresponding filter parameter(s).
 ii. IF the <Operator> is NOT supported the IUT sends an ATT_Handle_Value_Indication of the IDD RACP characteristic with the Response Code Op Code (0x0F), an Operator of Null (0x0F) and an Operand representing the Request Op Code (0x33) followed by the Response Code Value for Operator not supported (0x04).
 iii. ELSE IF the <Operand> is NOT supported the IUT sends an ATT_Handle_Value_Indication of the IDD RACP characteristic with the Response Code Op Code (0x0F), an Operator of Null (0x0F) and an Operand representing the Request Op Code (0x33) followed by the Response Code Value for Operand not supported (0x09).
 iv. ELSE IF the <Operand> is Sequence Number filtered by Reference Time Event and NO reference time events exist in the requested sequence number range OR IF the <Operand> is Sequence Number filtered by Non-Reference Time Event and ONLY reference time events exist in the requested sequence number range, the IUT sends an ATT_Handle_Value_Indication of the IDD RACP characteristic with the Response Code Op Code (0x0F) an Operator of Null (0x0F) and an Operand representing the Request Op Code (0x33) followed by the Response Code Value for No Records Found (0x06).
 v. ELSE, the IUT sends ATT_Handle_Value_Notification(s) of the IDD History Data characteristic, representing the required records; number and characteristic values depend on the <Operator>, <Operand>, corresponding filter parameter(s) and the generated list of records.
 a) The IUT sends an ATT_Handle_Value_Indication of the IDD RACP characteristic with the Response Code Op Code (0x0F) an Operator of Null (0x0F) and an Operand representing the Request Op Code (0x33) followed by the Response Code Value for Success (0xF0).
 vi. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.
 2. Verify that the characteristic value meets the requirements of the service.

• Expected Outcome
 Pass verdict

For each supported combination of <Operator> and <Operand>, the IUT sends
 - the required number of notifications of the IDD History Data characteristic and an indication containing the IDD RACP characteristic handle and value (Combination supported).
OR
- the appropriate error message (Combination not supported).

The value of the Sequence Number increments by 1 for each successive IDD History Data characteristic notification.

The oldest record is transmitted before newer records.

4.10.5 IDS/SEN/RAA/BV-01-C [Abort Operation Procedure]
Test Purpose
Verify the IUT can perform an Abort Operation of the Report Stored Records procedure with a Null Operator and no Operand.

• Reference
[3] 3.9.3, 3.9.4.1, and 3.9.4.5

• Initial Condition
Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Record Access Control Point characteristic

• Test Procedure
1. Perform an action on the IUT that will induce it to generate enough records such that the transmission is not able to complete before and abort procedure is attempted.
2. The Lower Tester writes the Report Stored Records Op Code (0x33) to the IDD RACP using an Operator of All records (0x33) and an Operand Sequence Number (0x0F).
3. The IUT starts to send ATT_Handle_Value_Notification of the IDD History Data characteristic.
4. The Lower Tester writes the Abort Operation Op Code (0x55) to the IDD RACP with an Operator of Null (0x0F) and no Operand.
5. The IUT sends an ATT_Handle_Value_Indication of the IDD RACP characteristic with the Response Code Op Code (0x0F) an Operator of Null (0x0F) and an Operand representing the Request Op Code (0x55) followed by the Response Code for Success (0xF0).
6. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.
7. Verify that the notifications stop.
8. Verify that the characteristic value meets the requirements of the service.

• Expected Outcome
Pass verdict
The IUT sends some, but not all notifications of the IDD History Data characteristic.

The IUT sends one indication of the IDD RACP characteristic with the Response Code Op Code containing a Response Code Value in the Operand set to Success.

4.10.6 IDD Record Access Control Point Procedures – Error Handling
This test group contains test cases to verify compliant operation of the IUT when the IDD Record Access Control Point Procedures is written with values outside defined ranges, or considered invalid or unexpected.
4.10.6.1 IDS/SEN/RAE/BI-01-C [Report Stored Records – ‘No Records Found’]

- **Test Purpose**
 Verify that the IUT responds properly if the Report Stored Records procedure is performed with an Operator of All records and Operand Sequence Number when the IUT does not contain any records.

- **Reference**
 [3] 3.9.3, 3.9.4.1, and 3.9.4.4

- **Initial Condition**
 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Record Access Control Point characteristic.

 Perform an action on the IUT that will induce it to remove all the stored records (by having the Lower Tester perform a Delete Stored Records procedure) or the Lower Tester knows the last sequence number.

- **Test Procedure**
 1. The Lower Tester writes the Report Stored Records Op Code (0x33) to the IDD RACP using a combination of supported Operator and Operand which request records which do not exist.
 2. The IUT sends an ATT_Handle_Value_Indication of the IDD RACP characteristic with the Response Code Op Code (0x0F) an Operator of Null (0x0F) and an Operand representing the Request Op Code (0x33) followed by the Response Code Value for No Records Found (0x06).
 3. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.
 4. Verify that the characteristic value meets the requirements of the service.

- **Expected Outcome**
 Pass verdict

 The IUT sends an indication of the IDD RACP characteristic with the Response Code Op Code (0x0F) an Operator of Null (0x0F) and an Operand representing the Request Op Code (0x33) followed by the Response Code Value for No Records Found (0x06).

4.10.6.2 IDS/SEN/RAE/BI-02-C [IDD RACP Specific Error – ‘Client Characteristic Configuration Descriptor Improperly Configured’]

- **Test Purpose**
 Verify that the IUT responds appropriately when a Client attempts to perform an IDD RACP procedure with a Client Characteristic Configuration descriptor that is not configured.

- **Reference**
 [3] 3.9.4.6

- **Initial Condition**
 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Record Access Control Point characteristic.

- **Test Procedure**
1. The Lower Tester resets to 0 the Client Characteristic Configuration descriptor of the IDD History Data characteristic.

2. The Lower Tester writes the *Report Stored Records* Op Code (0x33) to the IDD RACP using an Operator of *All records* (0x33) and Operand *Sequence Number* (0x0F).

3. The IUT sends an *ATT_Error_Response* with Error Code *Client Characteristic Configuration Descriptor Improperly Configured* (0xFD).

4. Verify that the characteristic value meets the requirements of the service.

 • **Expected Outcome**

 Pass verdict

 The IUT responds with an Attribute Protocol Application Error Code set to *Client Characteristic Configuration Descriptor Improperly Configured* (0xFD).

4.10.6.3 IDS/SEN/RAE/BI-03-C [IDD RACP Specific Error – ‘Operand not supported’]

 • **Test Purpose**

 Verify that the IUT responds appropriately when a Client writes an Op Code to the IDD RACP with an Operand Filter Type with a value from the RFU range.

 • **Reference**

 [3] 3.9.4.6

 • **Initial Condition**

 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Record Access Control Point characteristic.

 • **Test Procedure**

 1. The Lower Tester writes the *Report Stored Records* Op Code (0x33) to the IDD RACP using an Operator of *Greater than or equal* to (0x55) and an Operand Filter Type with a value from the RFU range followed by an appropriate Filter Parameters (minimum filter value).

 2. The IUT sends an *ATT_Handle_Value_Indication* of the IDD RACP characteristic with the *Response Code* Op Code (0x0F) an Operator of *Null* (0x0F) and an Operand representing the *Request Op Code* (0x33) followed by the *Response Code Value for Operand not supported* (0x09).

 3. The IUT receives an *ATT_Handle_Value_Confirmation* from the Lower Tester.

 4. Verify that that the characteristic value meets the requirements of the service.

 • **Expected Outcome**

 Pass verdict

 The IUT sends an *ATT_Handle_Value_Indication* of the IDD RACP characteristic with the *Response Code* Op Code (0x0F) an Operator of *Null* (0x0F) and an Operand representing the *Request Op Code* (0x33) followed by the *Response Code Value for Operand not supported* (0x09).

4.10.6.4 IDS/SEN/RAE/BI-04-C [IDD RACP Specific Error – ‘Procedure Already in Progress’]

 • **Test Purpose**

 Verify that the IUT responds appropriately when a Client attempts to perform an IDD RACP procedure before another IDD RACP procedure is completed.
• Reference

[3] 3.9.4.6

• Initial Condition

Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Record Access Control Point characteristic.

• Test Procedure

1. Perform an action on the IUT that will induce it to generate several (~100) records.
2. The Lower Tester writes the Report Stored Records Op Code (0x33) to the IDD RACP using an Operator of All records (0x33) and an Operand Sequence Number (0x0F).
3. Before the procedure is completed, the Lower Tester performs the same procedure again by writing the Report Stored Records Op Code (0x33) to the IDD RACP using an Operator of All records (0x33) and Operand Sequence Number (0x0F).
4. The IUT sends an ATT_Error_Response with Error Code Procedure Already in Progress (0xFE).
5. Verify that the IUT response meets the requirements of the service.

• Expected Outcome

Pass verdict

The IUT rejects the Write Request to start the second procedure and responds with an ATT_Error_Response with Error Code set to Procedure Already in Progress (0xFE).

4.10.6.5 IDS/SEN/RAE/BI-05-C [IDD RACP Specific Error – ‘Operator not Supported’]

• Test Purpose

Verify that the IUT responds appropriately when a Client writes an Op Code to the IDD RACP with an Operator with a value from the RFU range.

• Reference

[3] 3.9.4.6

• Initial Condition

Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Record Access Control Point characteristic.

• Test Procedure

1. The Lower Tester writes the Report Stored Records Op Code (0x33) to the IDD RACP using an Operator with a value from the RFU range and an Operand Sequence Number (0x0F).
2. The IUT sends an ATT_Handle_Value_Indication of the IDD RACP characteristic with the Response Code Op Code (0x0F) an Operator of Null (0x0F) and an Operand representing the Request Op Code (0x33) followed by the Response Code Value for Operator not supported (0x04).
3. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.
4. Verify that the characteristic value meets the requirements of the service.

• Expected Outcome

Pass verdict
The IUT sends an ATT_Handle_Value_Indication of the IDD RACP characteristic with the Response Code Op Code (0x0F) an Operator of Null (0x0F) and an Operand representing the Request Op Code (0x33) followed by the Response Code Value for Operator not supported (0x04).

4.10.6.6 IDS/SEN/RAE/BI-06-C [IDD RACP Specific Error – ‘Invalid Operator’]

- Test Purpose
 Verify that the IUT responds appropriately when a Client writes an Op Code to the IDD RACP with an invalid Operator.

- Reference
 [3] 3.9.4.6

- Initial Condition
 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Record Access Control Point characteristic.

- Test Procedure
 1. The Lower Tester writes the Report Stored Records Op Code (0x33) to the IDD RACP using an Operator of Null (0x0F) and Operand Sequence Number (0x0F).
 2. The IUT sends an ATT_Handle_Value_Indication of the IDD RACP characteristic with the Response Code Op Code (0x0F) an Operator of Null (0x0F) and an Operand representing the Request Op Code (0x33) followed by the Response Code Value for Invalid Operator (0x03).
 3. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.
 4. Verify that the characteristic value meets the requirements of the service.

- Expected Outcome
 Pass verdict

 The IUT sends an indication of the IDD RACP characteristic with the Response Code Op Code (0x0F) an Operator of Null (0x0F) and an Operand representing the Request Op Code (0x33) followed by the Response Code Value for Invalid Operator (0x03).

4.11 IDD History Data

This test group contains test cases to verify the IUT handling for various history events

4.11.1 IDS/SEN/HDE/BV-01-C [IDD History Data – ‘Chronological order of History Events and Sequence Number Incremented by 1’]

- Test Purpose
 Verify that the history events are in chronological order and the Sequence Number is incremented by 1.

- Reference
 [3] 3.10.4.2, 3.10.4.3, and 4.9

- Initial Condition
Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Record Access Control Point characteristic.

- **Test Procedure**
 1. Perform an action on the IUT that will induce it to generate a supported event type which requires at least three notifications of the IDD History Data characteristic.
 2. The Lower Tester writes the Report Stored Records Op Code (0x33) to the IDD RACP using an Operator of All records (0x33) and Operand Sequence Number (0x0F).
 3. The IUT sends at least three ATT_Handle_Value_Notification of the IDD History Data characteristic.
 4. The IUT sends an ATT_Handle_Value_Indication of the IDD RACP characteristic with the Response Code Op Code (0x0F) an Operator of Null (0x0F) and an Operand representing the Request Op Code (0x33) followed by the Response Code Value for Success (0xF0).
 5. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.
 6. Verify that the characteristic value meets the requirements of the service.

- **Expected Outcome**
 - **Pass verdict**

 The history events are in chronological order and the Sequence Number is incremented by 1 for each successive IDD History Data characteristic value.

4.11.2 IDS/SEN/HDE/BV-02-C [IDD History Data – ‘Event Types’]

- **Test Purpose**
 Verify that the IUT can respond with correct formatting and grouping of history events.

- **Reference**
 [3] 3.10.1, 3.10.2, 3.10.3, 3.10.4, and 4.9

- **Initial Condition**
 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Record Access Control Point characteristic.

 The IUT supports the event type being tested.

- **Test Procedure**
 1. Ensure that the IUT has no stored records.
 2. For each Test Pattern, and supported event type, in Table 4.22, repeat the following steps:
 a. Perform an action on the IUT that will induce it to generate the event type and applicable related event type.
 b. The Lower Tester writes the Report Stored Records Op Code (0x33) to the IDD RACP using an Operator of Greater than or equal to (0x55) and using the Sequence Number (0x0F) Filter Type in the Operand followed by a minimum value for the filter representing the sequence number since the last test pattern execution.
 c. The IUT sends one or more ATT_Handle_Value_Notification of the IDD History Data characteristic.
e. The IUT sends an `ATT_Handle_Value_Indication` of the IDD RACP characteristic with the **Response Code Op Code** (0x0F) an Operator of **Null** (0x0F) and an Operand representing the Request Op Code (0x33) followed by the **Response Code Value for Success** (0xF0).

f. The IUT receives an `ATT_Handle_Value_Confirmation` from the Lower Tester.

g. Verify that the characteristic value meets the requirements of the service.

- **Expected Outcome**

 Pass verdict

 The IUT sends an indication of the IDD RACP characteristic with the **Response Code Op Code** (0x0F) an Operator of **Null** (0x0F) and an Operand representing the **Request Op Code** (0x33) followed by the **Response Code Value for Success** (0xF0).

 The events of the same group are recorded in a sequence with increased Sequence Number field and the same Relative Offset field value, see Table 4.23.

<table>
<thead>
<tr>
<th>Test Pattern</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reference Time</td>
</tr>
<tr>
<td>2</td>
<td>Reference Time Base Offset</td>
</tr>
<tr>
<td>3</td>
<td>Bolus Calculated Part 1 of 2</td>
</tr>
<tr>
<td></td>
<td>Bolus Calculated Part 2 of 2</td>
</tr>
<tr>
<td>4</td>
<td>Bolus Programmed Part 1 of 2</td>
</tr>
<tr>
<td></td>
<td>Bolus Programmed Part 2 of 2</td>
</tr>
<tr>
<td>5</td>
<td>Bolus Delivered Part 1 of 2</td>
</tr>
<tr>
<td></td>
<td>Bolus Delivered Part 2 of 2</td>
</tr>
<tr>
<td>6</td>
<td>Delivered Basal Rate Changed</td>
</tr>
<tr>
<td>7</td>
<td>TBR Adjustment Started</td>
</tr>
<tr>
<td></td>
<td>Delivered Basal Rate Changed</td>
</tr>
<tr>
<td>8</td>
<td>TBR Adjustment Ended</td>
</tr>
<tr>
<td></td>
<td>Delivered Basal Rate Changed</td>
</tr>
<tr>
<td>9</td>
<td>TBR Adjustment Changed</td>
</tr>
<tr>
<td></td>
<td>Delivered Basal Rate Changed</td>
</tr>
<tr>
<td>10</td>
<td>Profile Template Activated</td>
</tr>
<tr>
<td>11</td>
<td>Basal Rate Profile Template Time Block Changed</td>
</tr>
<tr>
<td>12</td>
<td>Total Daily Insulin Delivery</td>
</tr>
<tr>
<td>Test Pattern</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>13</td>
<td>Therapy Control State Changed</td>
</tr>
<tr>
<td>14</td>
<td>Operational State Changed</td>
</tr>
<tr>
<td>15</td>
<td>Reservoir Remaining Amount Changed</td>
</tr>
<tr>
<td>16</td>
<td>Annunciation Status Changed Part 1 of 2</td>
</tr>
<tr>
<td></td>
<td>Annunciation Status Changed Part 2 of 2</td>
</tr>
<tr>
<td>17</td>
<td>ISF Profile Template Time Block Changed</td>
</tr>
<tr>
<td>18</td>
<td>I2CHO Profile Template Time Block Changed</td>
</tr>
<tr>
<td>19</td>
<td>Target Glucose Range Profile Template Time Block Changed</td>
</tr>
<tr>
<td>20</td>
<td>Priming Started</td>
</tr>
<tr>
<td>21</td>
<td>Priming Done</td>
</tr>
<tr>
<td>22</td>
<td>Data Corruption</td>
</tr>
<tr>
<td>23</td>
<td>Pointer Event</td>
</tr>
<tr>
<td>24</td>
<td>Bolus Template Changed Part 1 of 2</td>
</tr>
<tr>
<td></td>
<td>Bolus Template Changed Part 2 of 2</td>
</tr>
<tr>
<td>25</td>
<td>TBR Template Changed</td>
</tr>
<tr>
<td>26</td>
<td>Max Bolus Amount Changed</td>
</tr>
</tbody>
</table>

Table 4.22: IDD History Data Event Types

<table>
<thead>
<tr>
<th>Compound Event Group</th>
<th>Required Events and their Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolus Calculated</td>
<td>Bolus Calculated Part 1 of 2</td>
</tr>
<tr>
<td></td>
<td>Bolus Calculated Part 2 of 2</td>
</tr>
<tr>
<td>Bolus Programmed</td>
<td>Bolus Programmed Part 1 of 2</td>
</tr>
<tr>
<td></td>
<td>Bolus Programmed Part 2 of 2</td>
</tr>
<tr>
<td>Bolus Delivered</td>
<td>Bolus Delivered Part 1 of 2</td>
</tr>
<tr>
<td></td>
<td>Bolus Delivered Part 2 of 2</td>
</tr>
<tr>
<td>TBR Adjustment Started</td>
<td>TBR Adjustment Started</td>
</tr>
<tr>
<td></td>
<td>Delivered Basal Rate Changed</td>
</tr>
<tr>
<td>TBR Adjustment Ended</td>
<td>TBR Adjustment Ended</td>
</tr>
<tr>
<td></td>
<td>Delivered Basal Rate Changed</td>
</tr>
</tbody>
</table>
Compound Event Group

<table>
<thead>
<tr>
<th>Compound Event Group</th>
<th>Required Events and their Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBR Adjustment Changed</td>
<td>TBR Adjustment Changed</td>
</tr>
<tr>
<td></td>
<td>Delivered Basal Rate Changed</td>
</tr>
<tr>
<td>Basal Rate Profile Template Changed</td>
<td>Sequence of Basal Rate Profile Template Time Block Changed events</td>
</tr>
<tr>
<td>ISF Profile Template Changed</td>
<td>Sequence of ISF Profile Template Time Block Changed events</td>
</tr>
<tr>
<td>I:CHO Ratio Profile Template Changed</td>
<td>Sequence of I2CHO Ratio Profile Template Time Block Changed events</td>
</tr>
<tr>
<td>Target Glucose Range Profile Template Changed</td>
<td>Sequence of Target Glucose Range Profile Template Time Block Changed events</td>
</tr>
<tr>
<td>Annunciation Status Changed</td>
<td>Annunciation Status Changed Part 1 of 2</td>
</tr>
<tr>
<td></td>
<td>Annunciation Status Changed Part 2 of 2</td>
</tr>
<tr>
<td>Bolus Template Changed</td>
<td>Bolus Template Changed Part 1 of 2</td>
</tr>
<tr>
<td></td>
<td>Bolus Template Changed Part 2 of 2</td>
</tr>
</tbody>
</table>

Table 4.23: Compound Event Groups of IDD History Data Event Types

4.12 General Error Handling

This test group contains test cases to verify the IUT error handling behavior for various scenarios.

4.12.1 IDS/SEN/CBE/BI-01-C [General Error Handling – ‘Client Characteristic Configuration Descriptor Improperly Configured’]

- **Test Purpose**

 Verify that the IUT responds appropriately when a Client attempts to perform an IDD Command Control Point procedure with a Client Characteristic Configuration descriptor that is improperly configured.

- **Reference**

 [3] 3.7.2.6, 3.11.4

- **Initial Condition**

 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point characteristic.

- **Test Procedure**

 1. The Lower Tester resets to 0 both the Client Characteristic Configuration descriptors of the IDD Command Data and IDD Command Control Point characteristics.
 2. The Lower Tester writes the Read Basal Rate Profile Template OpCode (0x0FAA) to the IDD Command Control Point with an Operand comprising a Basal Rate Profile Template Number.
 3. The IUT sends an ATT_Error_Response with Error Code Client Characteristic Configuration Descriptor Improperly Configured (0xFD).
4. Verify that the characteristic value meets the requirements of the service.

- Expected Outcome
 Pass verdict

 The IUT sends an ATT_Error_Response with Error Code Client Characteristic Configuration Descriptor Improperly Configured (0xFD).

- Test Purpose
 Verify that the IUT responds appropriately when a Client writes an Op Code to the IDD Record Access Control Point with an Operand containing a filter parameter where none was expected.

- Reference
 [3] 3.11.4

- Initial Condition
 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Record Access Control Point characteristic.

- Test Procedure
 1. Perform an action on the IUT that will induce it to generate 3 or more records and a Reference Time history event.
 2. The Lower Tester writes the Report Stored Records Op Code (0x33) to the IDD RACP using an Operator of All records (0x33) and Operand Filter Type value set to Sequence Number (0x0F) and a Filter Parameter set to any value.
 3. The IUT sends an ATT_Handle_Value_Indication of the IDD RACP characteristic with the Request Op Code (0x33) followed by the Response Code Value for Invalid Operand (0x05).
 4. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.
 5. Verify that the characteristic value meets the requirements of the service.

- Expected Outcome
 Pass verdict

 The IUT sends an indication of the IDD RACP characteristic with the Response Code Op Code (0x0F) an Operator of Null (0x0F) and an Operand representing the Request Op Code (0x33) followed by the Response Code Value for Invalid Operand (0x05).

4.12.3 IDS/SEN/CBE/BI-03-C [General Error Handling – ‘Procedure Already in Progress’]

- Test Purpose
 Verify that the IUT responds appropriately when a Client attempts to perform an IDD Command CP procedure before another IDD RACP procedure is completed.

- Reference
3.7.1, 3.9.4.4, 3.9.4.6, and 3.11.4

• Initial Condition

Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point and IDD Record Access Control Point characteristic.

• Test Procedure

1. Perform an action on the IUT that will induce it to generate several (~100) records.
2. The Lower Tester writes the Report Stored Records Op Code (0x33) to the IDD RACP using an Operator of All records (0x33) and an Operand Sequence Number (0x0F).
3. Before the procedure is completed, the Lower Tester writes a mandatory Op Code to the IDD Command Control Point with, if applicable, the corresponding Operand.
4. The IUT sends an ATT_Error_Response with Error Code Procedure Already in Progress (0xFE).
5. Verify that the IUT response meets the requirements of the service.

• Expected Outcome

Pass verdict

The IUT rejects the Write Request from step 3 and responds with an Attribute Protocol Application Error Code set to Procedure Already in Progress (0xFE).

• Test Purpose

Verify that if a transaction fails the IUT discards all the data of the transaction.

• Reference

[3] 3.7.2.1.2, 3.7.2.7, and 3.11.2

• Initial Condition

Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Command Control Point characteristic.

The IUT has a basal rate profile template with the Configurable Flags field set to True, and Configured Flags field set to False.

The Lower Tester knows the basal rate profile template details such as the Configurable and Configured Flags field status by performing the IDS/SEN/CCP/BV-25-C [Get Template Status and Details Procedure].

• Test Procedure

1. The Lower Tester writes the Write Basal Rate Profile Template Op Code (0x0FCC) to the IDD Command Control Point with an Operand Basal Rate Profile Template record with the Flags field (Bit 0, End Transaction, set to True), a basal rate profile template number, first time block number index, duration(s) less (<) than 24 h, and rate(s).
2. The IUT sends an ATT_Handle_Value_Indication of the IDD Command Control Point characteristic with the Response Code Op Code (0x0F55) and an Operand consisting of the Request Op Code (0xFCC) followed by the Response Code Value for Plausibility check failed (0x75).

3. The IUT receives an ATT_Handle_Value_Confirmation from the Lower Tester.

4. The Lower Tester verifies that the basal rate profile template is configurable and that the basal rate profile template does not contain data (Configured Flags field is set to False), by performing the IDS/SEN/CCP/BV-25-C [Get Template Status and Details Procedure].

5. The Lower Tester attempts to read the basal rate profile template from step 4.

6. Verify that the characteristic value meets the requirements of the service.

 • Expected Outcome
 Pass verdict

 The IUT sends a Plausibility check failed (0x75) and ends the basal rate profile template writing procedure. The IUT sends a Procedure not applicable (0x74) as the basal rate profile template is not configured and cannot be read as only configured template can contain data.

4.12.5 IDS/SEN/CBE/BI-05-C [General Error Handling – ‘Invalid Counter’]

• Test Purpose
 Verify that the IUT does not allow a write of the IDD Status Reader Control Point characteristic if a required E2E-Counter is invalid.

• Reference
 [3] 1.7, 1.8, 3.6.2.5, 3.12 and 4.5.2.9

• Initial Condition
 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Status Reader Control Point characteristic.

• Test Procedure
 1. The Lower Tester writes the Get Total Daily Insulin Status Op Code (0x0395) to the IDD Status Reader Control Point with no Operand and an invalid E2E-Counter value set to 2 as the initial E2E-Counter starts with a value of 1 at the initial connection.
 2. The IUT sends an ATT_Error_Response with Error Code Invalid Counter (0x82).
 3. The Lower Tester receives an ATT_Error_Response with Error Code Invalid Counter (0x82).
 4. Verify that the IUT response meets the requirements of the service.

 • Expected Outcome
 Pass verdict

 The IUT sends an ATT_Error_Response with Error Code Invalid Counter (0x82).

• Test Purpose
 Verify that the IUT does not allow a write of the IDD Status Reader Control Point characteristic if the required E2E-CRC is invalid.
• Reference
 [3] 1.7, 1.8, 3.6.2.5, 3.12 and 4.5.2.9

• Initial Condition
 Perform the preamble described in Section 4.2.2 to enable the IUT for use with the desired <Control Point Characteristic> set to IDD Status Reader Control Point characteristic.

• Test Procedure
 1. The Lower Tester writes the Get Total Daily Insulin Status Op Code (0x0395) to the IDD Status Reader Control Point with no Operand and with an invalid E2E-CRC field attached.
 2. The IUT sends an ATT_Error_Response with Error Code Invalid CRC (0x81).
 3. The Lower Tester receives an ATT_Error_Response with Error Code Invalid CRC (0x81).
 4. Verify that the IUT response meets the requirements of the service.

• Expected Outcome
 Pass verdict
 The IUT sends an ATT_Error_Response with Error Code Invalid CRC (0x81).
5 Test Case Mapping

The Test Case Mapping Table (TCMT) maps test cases to specific requirements in the ICS. The product shall be tested in all roles for which support is declared in the ICS document.

The columns for the TCMT are defined as follows:

Item: Contains a logical expression based on specific entries from the associated ICS document. Contains a logical expression (using the operators AND, OR, NOT as needed) based on specific entries from the applicable ICS document(s). The entries are in the form of y/x references, where y corresponds to the table number and x corresponds to the feature number as defined in the ICS document for Insulin Delivery Service (IDS) [5].

Feature: A brief, informal description of the feature being tested.

Test Case(s): The applicable test case identifiers required for Bluetooth Qualification if the corresponding y/x references defined in the Item column are supported.

For purpose and structure of the ICS/IXIT and instructions for completing the ICS/IXIT refer to the Bluetooth ICS and IXIT Proforma documents.

<table>
<thead>
<tr>
<th>Item</th>
<th>Feature</th>
<th>Test Case(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDS 2/1</td>
<td>IDS Service Definition</td>
<td>IDS/SEN/SD/BV-01-C</td>
</tr>
<tr>
<td>IDS 2/2</td>
<td>IDD Status Changed</td>
<td>IDS/SEN/DEC/BV-01-C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IDS/SEN/DES/BV-01-C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IDS/SEN/CON/BV-01-C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IDS/SEN/CR/BV-01-C</td>
</tr>
<tr>
<td>IDS 2/3</td>
<td>IDD Status</td>
<td>IDS/SEN/DEC/BV-02-C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IDS/SEN/DES/BV-02-C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IDS/SEN/CON/BV-02-C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IDS/SEN/CR/BV-02-C</td>
</tr>
<tr>
<td>IDS 2/4</td>
<td>IDD Annunciation Status</td>
<td>IDS/SEN/DEC/BV-03-C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IDS/SEN/DES/BV-03-C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IDS/SEN/CON/BV-03-C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IDS/SEN/CR/BV-03-C</td>
</tr>
<tr>
<td>IDS 2/5</td>
<td>Read IDD Features</td>
<td>IDS/SEN/DEC/BV-04-C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IDS/SEN/CR/BV-04-C</td>
</tr>
<tr>
<td>IDS 2/6 AND IDS 3/1</td>
<td>Verify E2E-Protection with IDD Status Reader CP</td>
<td>IDS/SEN/CR/BV-05-C</td>
</tr>
<tr>
<td>(IDS 2/6 AND (IDS 2/7 OR IDS 2/9)) AND IDS 3/1</td>
<td>Verify E2E-Protection with multiple CPs</td>
<td>IDS/SEN/CR/BV-06-C</td>
</tr>
<tr>
<td>Item</td>
<td>Feature</td>
<td>Test Case(s)</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>IDS 2/2 AND IDS 5/1</td>
<td>Reset Status</td>
<td>IDS/SEN/RCP/BV-01-C</td>
</tr>
<tr>
<td>IDS 3/6 OR IDS 3/7 OR IDS 3/8</td>
<td>Get Active Bolus IDs or Get Active Bolus Delivery</td>
<td>IDS/SEN/RCP/BV-02-C, IDS/SEN/RCP/BV-03-C, IDS/SEN/RCP/BV-04-C, IDS/SEN/RCP/BV-05-C, IDS/SEN/RCPE/BI-01-C, IDS/SEN/RCPE/BI-02-C</td>
</tr>
<tr>
<td>IDS 3/2</td>
<td>Get Active Basal Rate Delivery</td>
<td>IDS/SEN/RCP/BV-06-C, IDS/SEN/RCP/BI-03-C</td>
</tr>
<tr>
<td>IDS 5/5 AND (IDS 3/2 OR IDS 3/6 OR IDS 3/7 OR IDS 3/8)</td>
<td>Get Total Daily Insulin Status</td>
<td>IDS/SEN/RCP/BV-07-C</td>
</tr>
<tr>
<td>IDS 5/6</td>
<td>Get Counter</td>
<td>IDS/SEN/RCP/BV-08-C, IDS/SEN/RCPE/BI-04-C</td>
</tr>
<tr>
<td>IDS 5/7 AND (IDS 3/2 OR IDS 3/6 OR IDS 3/7 OR IDS 3/8)</td>
<td>Get Delivered Insulin</td>
<td>IDS/SEN/RCP/BV-09-C</td>
</tr>
<tr>
<td>IDS 3/16</td>
<td>Get Insulin On Board</td>
<td>IDS/SEN/RCP/BV-10-C</td>
</tr>
<tr>
<td>IDS 2/7</td>
<td>IDD Command Control Point</td>
<td>IDS/SEN/DEC/BV-06-C, IDS/SEN/DES/BV-05-C, IDS/SEN/CON/BV-05-C</td>
</tr>
<tr>
<td>IDS 2/3 AND 2/7 AND IDS 6/1</td>
<td>Set Therapy Control State</td>
<td>IDS/SEN/CCPE/BV-01-C, IDS/SEN/CCPE/BI-02-C</td>
</tr>
<tr>
<td>IDS 2/7 AND IDS 6/2</td>
<td>Set Flight Mode</td>
<td>IDS/SEN/CCPE/BV-02-C</td>
</tr>
<tr>
<td>Item</td>
<td>Feature</td>
<td>Test Case(s)</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>IDS 2/7 AND IDS 6/3 AND (IDS 4/1 AND (IDS 4/2 OR IDS 4/3 OR IDS 4/4))</td>
<td>Snooze Annunciation</td>
<td>IDS/SEN/CCP/BV-03-C</td>
</tr>
<tr>
<td>IDS 2/7 AND IDS 6/4 AND (IDS 4/1 AND (IDS 4/2 OR IDS 4/3 OR IDS 4/4))</td>
<td>Confirm Annunciation</td>
<td>IDS/SEN/CCP/BV-04-C
IDS/SEN/CCP/BV-05-C</td>
</tr>
<tr>
<td>IDS 2/7 AND IDS 3/2</td>
<td>Read Basal Rate Profile Template or Write Basal Rate Profile Template</td>
<td>IDS/SEN/CCP/BV-06-C
IDS/SEN/CCP/BV-10-C
IDS/SEN/CCPE/BI-03-C
IDS/SEN/CCPE/BI-05-C
IDS/SEN/CCPE/BI-06-C
IDS/SEN/CBE/BI-01-C
IDS/SEN/CBE/BI-04-C</td>
</tr>
<tr>
<td>IDS 2/7 AND (IDS 3/3 OR IDS 3/4)</td>
<td>Set TBR Adjustment or Cancel TBR Adjustment</td>
<td>IDS/SEN/CCP/BV-14-C
IDS/SEN/CCP/BV-16-C</td>
</tr>
<tr>
<td>IDS 2/7 AND (IDS 3/6 OR IDS 3/7 OR IDS 3/8)</td>
<td>Set Bolus without a Bolus Template or Cancel Bolus or Get Available Boluses</td>
<td>IDS/SEN/CCP/BV-19-C
IDS/SEN/CCPE/BI-07-C
IDS/SEN/CCP/BV-21-C
IDS/SEN/CCP/BV-22-C</td>
</tr>
<tr>
<td>IDS 2/7 AND (IDS 3/6 OR IDS 3/7 OR IDS 3/8) AND IDS 3/10</td>
<td>Get Bolus Template or Set Bolus Template</td>
<td>IDS/SEN/CCP/BV-20-C
IDS/SEN/CCP/BV-23-C
IDS/SEN/CCP/BV-24-C</td>
</tr>
<tr>
<td>IDS 2/7 AND (IDS 3/2 OR IDS 3/5 OR IDS 3/10 OR IDS 3/13 OR IDS 3/14 OR IDS 3/15)</td>
<td>Get Template Status and Details or Reset Template Status</td>
<td>IDS/SEN/CCP/BV-25-C
IDS/SEN/CCP/BV-26-C</td>
</tr>
<tr>
<td>IDS 2/7 AND IDS 6/20</td>
<td>Start Priming or Stop Priming</td>
<td>IDS/SEN/CCP/BV-29-C
IDS/SEN/CCPE/BI-04-C</td>
</tr>
<tr>
<td>Item</td>
<td>Feature</td>
<td>Test Case(s)</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>IDS 2/7 AND IDS 6/22</td>
<td>Set Initial Reservoir Fill Level</td>
<td>IDS/SEN/CCP/BV-30-C</td>
</tr>
<tr>
<td>IDS 2/7 AND IDS 6/23</td>
<td>Reset Reservoir Insulin Operation Time</td>
<td>IDS/SEN/CCP/BV-31-C</td>
</tr>
<tr>
<td>IDS 2/7 AND IDS 3/13</td>
<td>ISF Profile Template</td>
<td>IDS/SEN/CCP/BV-07-C, IDS/SEN/CCP/BV-11-C</td>
</tr>
<tr>
<td>IDS 2/7 AND IDS 3/14</td>
<td>I2CHO Ratio Profile Template</td>
<td>IDS/SEN/CCP/BV-08-C, IDS/SEN/CCP/BV-12-C</td>
</tr>
<tr>
<td>IDS 2/7 AND IDS 3/15</td>
<td>Target Glucose</td>
<td>IDS/SEN/CCP/BV-09-C, IDS/SEN/CCP/BV-13-C</td>
</tr>
<tr>
<td>IDS 2/7 AND IDS 6/30</td>
<td>Get Max Bolus Amount</td>
<td>IDS/SEN/CCP/BV-32-C</td>
</tr>
<tr>
<td>IDS 2/7 AND IDS 6/31</td>
<td>Set Max Bolus Amount</td>
<td>IDS/SEN/CCP/BV-33-C</td>
</tr>
<tr>
<td>IDS 2/8</td>
<td>IDD Command Data</td>
<td>IDS/SEN/DEC/BV-07-C, IDS/SEN/DES/BV-06-C, IDS/SEN/CON/BV-06-C</td>
</tr>
<tr>
<td>IDS 2/9</td>
<td>IDD Record Access Control Point</td>
<td>IDS/SEN/DEC/BV-08-C, IDS/SEN/DES/BV-07-C, IDS/SEN/CON/BV-07-C, IDS/SEN/RAE/BI-02-C</td>
</tr>
<tr>
<td>(IDS 2/9 AND IDS 7/3) AND IDS 2/7</td>
<td>IDD RACP and IDD Command CP</td>
<td>IDS/SEN/CBE/BI-03-C</td>
</tr>
<tr>
<td>IDS 2/9 AND IDS 7/2</td>
<td>Delete Stored Records</td>
<td>IDS/SEN/RAD/BV-01-C</td>
</tr>
<tr>
<td>IDS 2/9 AND IDS 7/1</td>
<td>Report Number of Stored Records</td>
<td>IDS/SEN/RAN/BV-01-C, IDS/SEN/RAN/BV-02-C</td>
</tr>
<tr>
<td>IDS 2/9 AND IDS 7/4</td>
<td>Abort Operation</td>
<td>IDS/SEN/RAA/BV-01-C</td>
</tr>
<tr>
<td>IDS 2/10</td>
<td>IDD History Data</td>
<td>IDS/SEN/DEC/BV-09-C</td>
</tr>
<tr>
<td>Item</td>
<td>Feature</td>
<td>Test Case(s)</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>IDS 2/9 AND ((IDS 8/1 AND NOT IDS 8/2) OR (IDS 8/2 AND NOT IDS 8/1) OR IDS 8/3 OR IDS 8/4 OR IDS 8/5 OR IDS 8/6 OR IDS 8/7 OR IDS 8/8 OR IDS 8/9 OR IDS 8/10 OR (IDS 3/2 AND IDS 2/7) OR IDS 8/12 OR IDS 8/13 OR IDS 8/14 OR IDS 8/15 OR IDS 8/16 OR (IDS 3/13 AND IDS 2/7) OR (IDS 3/14 AND IDS 2/7) OR (IDS 3/15 AND IDS 2/7) OR IDS 8/20 OR IDS 8/21 OR IDS 8/22 OR IDS 8/23 OR IDS 8/24 OR IDS 8/25 OR IDS 8/26)</td>
<td>IDD History Data - Event Types</td>
<td>IDS/SEN/HDE/BV-02-C</td>
</tr>
<tr>
<td>IDS 5/5 AND IDS 3/1</td>
<td>E2E-Counter and E2E-CRC</td>
<td>IDS/SEN/CBE/BI-05-C, IDS/SEN/CBE/BI-06-C</td>
</tr>
</tbody>
</table>

Table 5.1: Test Case Mapping
6 IDD Status Reader CP Test Matrix

The following table summarizes the combination of some of the IDD Status Reader Control Point Op Codes and the Response Code Values that are tested and not tested. For the table, below, the following key applies:

- **YES** = A test for this combination exists.
- **NO** = A test for this combination does not exist.
- **N/A** = Not a valid combination.

<table>
<thead>
<tr>
<th>IDD Status Reader CP Response Code</th>
<th>IDD Status Reader CP Op Code</th>
<th>Get Active Bolus Delivery</th>
<th>Get Active Basal Rate Delivery</th>
<th>Get Counter</th>
<th>Reset Status</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>YES</td>
<td>N/A</td>
</tr>
<tr>
<td>Op Code not supported</td>
<td></td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Invalid Operand</td>
<td></td>
<td>YES</td>
<td>N/A</td>
<td>YES</td>
<td>N/A</td>
<td>NO</td>
</tr>
<tr>
<td>Procedure not completed</td>
<td></td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Parameter out of range</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Procedure not applicable</td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 6.1: IDD Status Reader Control Point Response Code test coverage
7 IDD Command CP Test Matrix

The following table summarizes the combination of some of the IDD Command Control Point Op Codes and the Response Code Values that are tested and not tested. For the tables, below, the following key applies:

- **YES** = A test for this combination exists.
- **NO** = A test for this combination does not exist.
- **N/A** = Not a valid combination.

<table>
<thead>
<tr>
<th>IDD Command CP Response Code</th>
<th>IDD Command CP Op Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Set Therapy Control State</td>
</tr>
<tr>
<td>Success</td>
<td>YES</td>
</tr>
<tr>
<td>Op Code not supported</td>
<td>N/A</td>
</tr>
<tr>
<td>Invalid Operand</td>
<td>YES</td>
</tr>
<tr>
<td>Procedure not completed</td>
<td>NO</td>
</tr>
<tr>
<td>Parameter out of range</td>
<td>N/A</td>
</tr>
<tr>
<td>Procedure not applicable</td>
<td>NO</td>
</tr>
<tr>
<td>Plausibility check failed</td>
<td>N/A</td>
</tr>
<tr>
<td>Maximum Bolus Number reached</td>
<td>N/A</td>
</tr>
<tr>
<td>Procedure already in progress</td>
<td>NO</td>
</tr>
</tbody>
</table>

Table 7.1: IDD Command Control Point Response Code test coverage
8 IDD RACP Test Matrix

The following tables summarize the features of IDD RACP and the combinations with other features that are tested and not tested. For the tables, below, the following key applies:

- **YES** = A test for this combination exists.
- **NO** = A test for this combination does not exist.
- **N/A** = Not a valid combination.

IDD RACP Operators

<table>
<thead>
<tr>
<th>IDD RACP Operators</th>
<th>IDD RACP Request Op Codes</th>
<th>Report stored records</th>
<th>Delete stored records</th>
<th>Abort operation</th>
<th>Report number of stored records</th>
</tr>
</thead>
<tbody>
<tr>
<td>All records</td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>N/A</td>
<td>YES</td>
</tr>
<tr>
<td>Less than or equal to</td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>N/A</td>
<td>YES</td>
</tr>
<tr>
<td>Greater than or equal to</td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>N/A</td>
<td>YES</td>
</tr>
<tr>
<td>Within range of (inclusive)</td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>N/A</td>
<td>YES</td>
</tr>
<tr>
<td>First record</td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>N/A</td>
<td>YES</td>
</tr>
<tr>
<td>Last record</td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>N/A</td>
<td>YES</td>
</tr>
<tr>
<td>Null</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>YES</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 8.1: IDD RACP Operator test coverage

IDD RACP Response Codes

<table>
<thead>
<tr>
<th>IDD RACP Response Codes</th>
<th>IDD RACP Request Op Codes</th>
<th>Report stored records</th>
<th>Delete stored records</th>
<th>Abort operation</th>
<th>Report number of stored records</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success</td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Op Code not supported</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>NO</td>
</tr>
<tr>
<td>Invalid Operator</td>
<td></td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td>NO</td>
<td>N/A</td>
</tr>
<tr>
<td>Operator not supported</td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>N/A</td>
<td>YES</td>
<td>N/A</td>
</tr>
<tr>
<td>InvalidOperand</td>
<td></td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>N/A</td>
</tr>
<tr>
<td>No records found</td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Abort unsuccessful</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>NO</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Procedure not completed</td>
<td></td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Table 8.2: IDD RACP Response Code test coverage

<table>
<thead>
<tr>
<th>IDD RACP Response Codes</th>
<th>IDD RACP Request Op Codes</th>
<th>Report stored records</th>
<th>Delete stored records</th>
<th>Abort operation</th>
<th>Report number of stored records</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operand not supported</td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>N/A</td>
</tr>
<tr>
<td>Procedure not applicable</td>
<td></td>
<td>NO</td>
<td>NO</td>
<td>N/A</td>
<td>NO</td>
<td>N/A</td>
</tr>
<tr>
<td>Procedure already in progress</td>
<td></td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 8.3: IDD RACP Filter Type test coverage

<table>
<thead>
<tr>
<th>IDD RACP Operators</th>
<th>Filter Type</th>
<th>Sequence Number</th>
<th>Sequence Number filtered by Reference Time Event</th>
<th>Sequence Number filtered by Non-Reference Time Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>All records</td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Less than or equal to</td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Greater than or equal to</td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Within range of (inclusive)</td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>First record</td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Last record</td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>